RIGHT TO EDUCATION

STRUCTURED LESSON PLANS FOR CBSE-AFFILIATED SCHOOLS

GRADE - 09

Committee for Development of Structured Lesson Plans

Honorary Advisors

Shri Praveen Prakash IAS
Principal Secretary to Government Department of SchoolEducation, AP

Shri S. Suresh Kumar IAS
Commissioner of School Education, AP

Shri B. Srinivasa Rao IAS
State Project Director, Samagra Shiksha, AP

Shri. M.Venkata Krishna Reddy
MA., B.Ed
Secretary, Model Schools, AP
Shri K. Ravindranath Reddy MA., B.Ed.
Director, Government Textbook Press, AP
Advisors
CRISP
Shri. R. Subrahmanyam
I.A.S.(Retd), Secratary of CRISP
B. Pratap Reddy MA., B.Ed., Ph.D.

Director, SCERT, AP

Ms. K. Sandhya Rani
IPoS.(Retd), Founding member of CRISP

Mrs. P. Usha Kumari

I.A.S.(Retd), State Lead of AP Team CRISP

Programme Co-ordinators

Smt. Chirakala. Sreelatha
State Co-ordinator, CBSE, AP
Shri. K. Dharma Kumar
Co-ordinator,CBSE, AP

Smt. Sripathi. Bhanumathi Faculty, SCERT, AP
Dr. G. Kesava Reddy, Faculty, SCERT, AP

Subject Experts

Sri. M. Vanapal Reddy
Principal, APSWREIS, Karempudi
Sri. P.V. Karunakara Rao
APSWREIS - Kopperla,
Sri. B. Udaya Bhaskar
APMS, Reddy Gudem
Smt. J. Jhansi Rani
APRS, Nagireddy Gudem

Sri. M. Srinivasa Rao
APSWREIS, Adavitakkellapadu
Smt. Y. Sesha Vagdevi Alekhya
KGBV, Makavarapalem
Sri. Venkata Ramana Murthy
APMS, Bukkanaidupeta, Vepada
Sri. K. Sanjeeva Reddy APMS, Kolimigundla

MESSAGE BY PRINCIPAL SECRETARY

It brings me a great joy to invite all the teachers of CBSE-affiliated government schools to this valuable resource book of structured lesson plans. Inspired by the vision of our honorable Chief Minister, we are committed to supporting the teachers in shaping a bright future for all the children in Andhra Pradesh. We envision our children transforming into global citizens, excelling in academics and being ready for the world of work. In order to aid the teachers in this pivotal task of preparing the students to emerge as global citizens, the School Education Department is committed to making available the best resources and training. This lesson plans resource book is a transformational step in that direction. Utilized appropriately, this resource books will transform the teaching-learning process and experience in the classroom and lead to deeply engaging the students.

I hope you make the best use of this resource, which has been put together by our own teachers trained by experts from Azim Premji University and facilitated by the Center for Research in Schemes and Policies (CRISP). They have taken into consideration the teaching-learning needs of all types of learners and created lesson plans that are rich in activities, examples, and assessments. They have followed the CBSE Learning Framework and NCERT Learning Outcomes for Secondary Stage, along with principles from the National Curriculum Framework: School Education 2023.

At the crucial juncture of secondary school, our children need spirited teachers like you to prepare them for the changing and dynamic world. You bear the power and responsibility to shape their minds and hearts and guide them to step out into the world and contribute to our state's growth and country's economy.

Your dedication and efforts in implementing these structured pedagogical approaches will not only enhance the learning experience of our students but also equip them with the necessary skills and knowledge to thrive in an ever-evolving global landscape. Together, let us embark on this journey of educational excellence and empower our students to become the leaders of tomorrow.

With great hope and appreciation,

Shri Praveen Prakash, IAS

Principal Secretary, Department of School Education
Government of Andhra Pradesh

MESSAGE BY COMMISSIONER

The United Nations Sustainable Development Goal 4 (SDG 4) underscores the pivotal role of education in unleashing human potential and fostering self-respect. As the Commissioner of School Education, I am privileged to champion a vision that empowers the children of Andhra Pradesh with boundless possibilities and opportunities. Through pioneering reforms in education, encompassing cutting-edge infrastructure, ongoing professional development for educators and administrators, innovative digital initiatives, and an unwavering commitment to providing top-tier educational resources, our state stands as a beacon of educational transformation.

Government of Andhra Pradesh is committed to implement best initiatives to enhance rthe quality of education in the State. Obtaining CBSE affiliation to 1000 schools is one of such key initiatives. This lesson plan resource book developed for the use of teachers working in CBSE schools represents yet another milestone in our journey. Recognizing teachers as the cornerstone of our education system, we have entrusted them to craft these lesson plans for your benefit. After undergoing rigorous training in pedagogy, subject matter, learning outcomes and competencies, our educators have infused these lesson plans with their profound knowledge of the subject, and understanding of our students and their diverse contexts. It is a labor of love and thought, an amalgamation of explorations and experiments, presented for you to embrace and utilize effectively.

These lesson plans are created with the aim of providing a rich repository of ideas to enhance classroom engagement and productivity, and provide yet another innovative resource that teachers can employ. Feel free to adapt and supplement these plans as you see fit. The teacher reflections section serves as a tool for self-assessment and improvement, allowing you to augment your lessons and address any gaps you may identify.

I am optimistic about our state's trajectory towards competency-based teaching, with a focus on measurable learning outcomes that can be continually evaluated and enhanced. The decision to affiliate 1000 schools with CBSE and implement a curriculum aligned with national standards is indeed a significant stride in the right direction. Together, let us embrace this transformative journey towards educational excellence and empower our students to thrive in an ever-evolving world.

I congratulate everyone who worked towards bringing this excellent resource book for the teachers. I thank Center for Research in Schemes and Policies (CRISP) for the innovative ideas they presented to the Government, including development of structured lesson plans. The support of SPD Samagra Shiksha, continuous facilitation by CRISP, expert technical advice of Azim Premji University faculty, hard work of our teachers, CBSE team in Commissionerate office and SCERT made it possible to bring out this resource book in time for the 2024-25 academic year.

With sincere optimism and appreciation, Shri S Suresh Kumar, IAS
Commissioner,
Department of School Education, Government of Andhra Pradesh

MESSAGE BY THE STATE PROJECT DIRECTOR

The National Education Policy 2020 highlights that the purpose of education is to develop good human beings capable of rational thought and action, possessing compassion and empathy, courage and resilience, scientific temper and creative imagination, with sound ethical moorings and values. It aims at producing engaged, productive, and contributing citizens for building an equitable, inclusive, and plural society as envisaged by our Constitution. To realize the NEP's vision, it is essential for educators to align with this goal and transition from curriculum-centric to competency-driven teaching methods.

The State's commitment to this shared vision is visible in the Strengthening Andhra's Learning Transformation (SALT) Project, where one of the pivotal focus areas is the professional development of teachers. This entails utilizing insights from self-assessments, academic performance data from school-based evaluations, and classroom observations to enhance pedagogical skills. With continuous support from the education department, teachers will refine their pedagogical approaches, ensuring effective delivery of lessons.

In the same vein, I am delighted to introduce this Lesson Plan resource book for our CBSE-affiliated schools, crafted by experts from both within our state and across the nation. These lesson plans signify a shift away from rote memorization and content accumulation towards a structured approach aimed at fostering values, dispositions, and competencies in students. Rooted in the vision of the NEP and operationalized by the National Curriculum Framework: School Education 2023, each plan corresponds to a 40-minute class targeting specific learning outcomes from NCERT's Secondary Stage. These outcomes collectively contribute to observable learning achievements and the development of competencies over time. Moreover, this resource book empowers teachers to tailor their content and assessments dynamically by monitoring and addressing students' learning needs continuously.

I hope the teachers will find these resources valuable and helpful in transforming classroom transactions. Together I hope we will reshape the educational landscape of Andhra Pradesh in the years ahead. Best wishes for your endeavors!

Shri B Srinivasa Rao, IAS
State Project Director, Samagra Shiksha
Government of Andhra Pradesh

MESSAGE BY JOINT DIRECTOR, CBSE

In a landmark decision, the Government of Andhra Pradesh affiliated 1000 Government schools with the Central Board of Secondary Education (CBSE). This transition marks a significant milestone in our efforts to provide standardized and high-quality education to our students. The CBSE curriculum is widely recognized for its comprehensive and contemporary approach to learning, offering students a competitive edge on a national scale. The Board emphasizes holistic development of learners by providing a stress-free learning environment that will develop competent, confident and enterprising citizens who will promote harmony and peace. It is committed to providing quality education to promote intellectual, social and cultural vivacity among its learners.

By aligning our schools with CBSE, we aim to ensure our students are well-prepared to compete on a national level and excel in today's dynamic world. In order to achieve this, our utmost efforts have gone into developing these structured lesson plans incorporating NCERT's Secondary Stage Learning Outcomes, the National Curricular Framework: School Education 2023, and CBSE Learning Framework document developed by Azim Premji University. 'Structured Pedagogy' is a scientific, evidence-based, learner-centric approach for teaching that equips every teacher with clearly defined objectives, proven methods, well-structured tools, and practical training. After many rounds of rigorous training, expert teachers from our CBSE schools integrated the conceptual and practical aspects of their subjects and condensed them into these easy-to-use lesson plans.

We thank the Center for Research in Schemes and Policies (CRISP) and Azim Premji University for their innovative ideas and tireless support.

I encourage each of you to fully utilize these plans and personalize them to fit your teaching style. May this invaluable resource serve as a valuable tool as you guide Grade 10 students through this critical stage of their education. Your dedication as teachers brings us immense joy and pride, as we entrust the future of our state's children to your capable hands. Wishing you all the best!

Mr Krishna Reddy
Joint Director, CBSE
Department of School Education
Government of Andhra Pradesh

MESSAGE BY CENTRE FOR RESEARCH IN SCHEMES AND POLICIES (CRISP)

In October 2023, the Centre for Research in Schemes and Policies (CRISP) forged a significant partnership with the Government of Andhra Pradesh, to help bring about a transformation for the state's School Education system. Our inaugural initiative was designed to cultivate excellence within the 1000 CBSE-affiliated schools. CRISP's primary focus was to support both teachers and students during the transition from the State Board to the CBSE Board.

Research reveals that an average teacher grapples with approximately 1,500 decisions daily. While it may be impractical to intervene in every decision-making process, our aim was to alleviate the cognitive load associated with tasks such as lesson planning, question formulation, activity design, and assessment creation. Recognizing the novelty of transitioning from the State Syllabus to CBSE, our initiative encompassed the provision of essential resources alongside comprehensive training for all educators involved.

To enhance our efforts, we collaborated with Central Square Foundation, a renowned organization in the field of Education, to train our teachers in their Structured Pedagogy approach. This evidencebased, learner-centric methodology equips educators with clearly defined objectives, proven methods, well-structured tools, and practical training.

We are thankful to professors from Azim Premji University who provided invaluable support by mentoring the core group of teachers over a six-month period, guiding them through NCERT's Learning Outcomes for the Secondary Stage and the National Curriculum Framework: School Education 2023. The culmination of these efforts is the creation of this resource book, comprising structured lesson plans for the benefit of teachers, and vetted meticulously by the SCERT. We hope that the tremendous effort of our teachers serves as an inspiration to continue shaping the minds of our youth.

We extend our sincere gratitude to Dr. Emmanuel Joseph, Joint Commissioner (Academics) at CBSE, New Delhi, professors from Azim Premji University, experts from Central Square Foundation, the State CBSE team, SCERT, and the entire Department of School Education for their invaluable guidance and support throughout this endeavor. Their deep commitment to enhance the quality of education and to transform the teaching-learning process in the classrooms made it possible to bring this initiative to life within a remarkably short span of time.

We thank the Government of Andhra Pradesh for giving us this opportunity, for the trust they reposed in accepting the innovative idea and facilitating it to germinate and fructify.

Centre for Research in Schemes and Policies
February, 2024

FOREWORD BY DIRECTOR, SCERT

At the heart of quality education lie two indispensable pillars: the teacher and the student. While textbooks, digital resources, infrastructure, and curriculum play crucial roles in the educational landscape, it is the teacher who bears the primary responsibility of delivering lessons, facilitating comprehension of complex concepts, nurturing independent thinking, and molding individuals into responsible members of society. The Department of School Education, Government of Andhra Pradesh aspires to create citizens equipped with the skills and competencies to succeed and solve problems at a global scale, while remaining locally rooted and aware.

To achieve this goal, we have developed a comprehensive resource book to support teachers across the state, enhancing their planning and teaching processes with ease and creativity.

These meticulously crafted lesson plans have been curated by trained educators and thoroughly reviewed by SCERT experts. Each lesson plan is structured into distinct period plans, addressing specific topics within the lesson. Clear learning outcomes are outlined at the beginning of each lesson and progressively addressed throughout the class session. Furthermore, each period plan is divided into sections including Learning Outcomes, Teaching-Learning Process, Pointers for Assessment, and Material Required, offering teachers a flexible framework to tailor to their preferences. The provided questions to assess prior knowledge, suggested activities, and prompts for understanding checks serve as guides, encouraging teachers to adapt the plans to suit the unique needs of their classroom and students.

The SCERT extends its sincere appreciation to the dedicated members of its textbook committee, source material reviewers, lesson plan creators, and technical partners for their invaluable contributions in realizing this vision. We also express our gratitude to the Principal Secretary and Commissioner, Department of School Education, and State Project Director, Samagra Siksha, Department of School Education for their steadfast commitment to promoting quality education, consistently driving us toward excellence in all facets. We appreciate the steadfast support of Center for Research in Schemes and Policies (CRISP) and professors from Azim Premji University in developing the lesson plans.

Dr B Pratap Reddy
Director,
State Council of Educational, Research, and Training Government of Andhra Pradesh

INTRODUCTION AND BACKGROUND TO THE STRUCTURED LESSON PLANS RESOURCE BOOK

The National Education Policy, 2020 (NEP) focuses strongly on a need for a well-defined Curriculum and a Structured Pedagogy in schools, to ensure holistic, integrated, enjoyable and engaging learning of the students. ${ }^{1}$ In pursuance of the Memorandum of Understanding (MoU) signed between Government of Andhra Pradesh (GoAP) and Centre for Research in Schemes and Policies (CRISP), and the recommendation made by CRISP in the Action Plan for CBSE, GoAP agreed that "Structured pedagogy should be adopted for Classes 8 and above in the newly converted CBSE schools. For this purpose, while using material already available, standard lesson plans should be prepared. " In furtherance of adapting structured pedagogy approach in Government CBSE Schools to improve the quality of teaching-learning, the GoAP organized the following:

1. Organised a Structured Pedagogy workshop was organized in collaboration with CRISP in Vijayawada from 11th to 13th July 2023. Experts from Central Square Foundation and Azim Premji University (APU) anchored the workshop, with additional sessions by Room to Read, Leadership for Equity, Ambitus World School, and SCERT Telangana. Sessions focused on the need for a structured way of teaching and learning, shifting from rote method to competency based curriculum, and delved into the NCERT Learning Outcome Framework for the Secondary Stage. A total of 60 subject teachers along with A.P SCERT subject experts participated in the workshop representing English, Mathematics, Social Science, Biology, Chemistry, and Physics. Each subject group consisted of 10 teachers, 1 SCERT expert, and 1 CBSE School Principal acting as a Coordinator. With guidance from CSF and APU, the subject groups prepared one sample lesson plan per subject by the end of the 3-day workshop.
2. Post the workshop, facilitated the expert subject teachers to work on lesson plan development, with virtual support from APU faculty virtually.
3. Organised a Capacity Building workshop from 11th to 14th October 2023 in Vijayawada with expert support of experts from APU. Sessions were held on mapping content to specific learning competencies, designing and using creative TeachingLearning Materials, adding Check for Understanding questions, using interdisciplinary approach in the lessons, addressing student misconceptions, and creating a diverse range of assessments. The workshop enhanced the ability of the teachers to

[^0]a. understand the principles and practices underpinning competency-based curriculum as outlined in NEP 2020 and NCF-SE 2023;
b. equip the teachers to analyse the need to effectively align curriculum content, competencies, pedagogical practices, and assessment methods in the classroom;
c. helped them to learn to develop competency-based lesson plans that integrate NCF-SE 2023 guidelines, ensuring that learning outcomes are aligned to the desired competencies with the help of model lesson plans
d. trained them to gain practical insights into designing and implementing both formative and summative assessments that accurately measure students' progress toward achieving the competencies set forth in NCF-SE 2023
4. Held a physical camp for the core team of teachers to develop and quality check the lesson plans for all the subjects in Vijayawada for 12-days, from 20th November to 1st December 2023. APU teachers and Leadership for Equity team provided technical support.
5. In early February 2024 the lesson plans developed for Grade 9 and 10 were vetted and finalised by AP SCERT and sent to the Textbook Press for printing and distribution.

ELEMENTS OF THE STRUCTURED LESSON PLANS

All lesson plans are meticulously organized into detailed period plans, each focusing on a specific topic and its corresponding Learning Outcomes. These period plans are then subdivided into four essential sections:

1. Topic and Learning Outcomes, along with associated Indicators
2. Teaching-Learning Process, highlighting Pedagogical Strategies
3. Assessment Strategies to gauge student understanding and progress
4. Materials required, ensuring all necessary resources are readily available for effective instruction.

Within these sections, the following elements have been covered:

- Higher order thinking questions have been added to encourage critical thinking, problem-solving, creativity, and analysis. These questions usually move beyond 'What', and 'When', and focus on 'Why', or 'How'. Some examples of these are: "Explain the twinkling of stars." [Physics]
"How does trade help connect the countries in the world?" [History]
"Why can amphibians and reptiles tolerate mixing of blood to some extent?" [Biology]
"Do you think it was right for the farmer to be angry with the postmaster? Why or why not? [English]
"What should India do or achieve to become a developed country?" [Economics]
"Why does a snail change its sex?" [Biology]
"How did Gendhadhur, a backward village in Mysore, Karnataka, become rich in rain water?" [Geography]
"Why can't astronauts see the rainbow from the surface of the moon?" [Physics]
- Keywords and key concepts are stated in the beginning of every chapter so that the teacher can be sure to cover them during the course of the lesson
- Prior knowledge and skills are tested at the beginning of every period to assess whether students have retained concepts covered in previous lessons, and to gauge the overall level of knowledge on the topic to be covered
- Prompts and questions to address common misconceptions about the topic have been given in the plans to clarify any incorrect ideas students may have. For example: "A woman in your neighborhood is blamed for giving birth to a baby girl. Is the sex of the baby determined by her? Remove the misconception through your argument." [Biology]
- Discussion prompts for class or group discussions have been given, especially for the humanities subjects. For example:
"Why do you think men receive higher wages than women for the same job?
Discuss." [Economics]
"Human societies have steadily become more interlinked. Comment." [History] "Discuss the benefits and drawbacks of using chemical fertilizers." [Geography]
- Assessment and remedial periods have been allocated after every lesson plan to gauge student learning, and revise concepts that students need more clarity or practice in, before moving to the next lesson
- Inter-disciplinary nature of subjects and topics has been encouraged in the plans so that students recognize the value of all subjects equally. It also promotes a holistic understanding of the topic and opens them up to thinking about an issue from various lenses
- Formative and summative assessments, check for understanding questions, and worksheets are given for every lesson to assess student learning at every stage of the lesson
- Space for teachers to reflect on every period has been provided at the end of the plan. The prompts are designed to assist teachers in assessing the alignment of their plan with overarching curricular goals and competencies, evaluating student engagement levels, ensuring effectiveness of assessment strategies in measuring student understanding, and gauging the efficacy of teaching materials, activities, and case studies utilized

Teachers should have a comprehensive understanding of the curricular goals, competencies, and the nature of the subject they teach. It is essential to thoroughly review the section on "Pedagogical Practices" to gain deeper insight into teaching methodologies. With this groundwork, teachers can then delve into the lesson plans for their subject. It is highly recommended to study the entire lesson plan before initiating the lesson in class. Throughout the lesson, teachers can refer to each period plan and manage class time effectively to cover the elements outlined in the plan. Additionally, teachers are encouraged to modify the plan as needed, incorporating or removing content, questions, or activities to address the specific needs of their students and contextual requirements.

PEDAGOGICAL PRACTICES

Broad Aims of School Education

The Learning Standards are guided by certain widely agreed upon broad Aims of School Education that are articulated in this NCF. These aims have been arrived at from the vision and purpose of education as envisaged by NEP 2020:

1. Rational Thought and Autonomy: An individual should have the capacity of rational reasoning and sufficient knowledge to understand the world around them. An individual should be able to make an informed decision. This fundamentally requires knowledge in breadth and depth.
2. Health and wellbeing: School education should be a wholesome experience for students. Students should acquire Knowledge, Capacities, and Dispositions that promote mind-body wellness.
3. Democratic participation: This requires appropriate knowledge capacities, values, and dispositions so that an individual may be oriented towards sustaining and improving the democratic functions of Indian society.
4. Economic participation: Education should work as an enabler for a healthy democracy as well as a healthy economy.
5. Cultural and social participation: Along with democracy and economy, society, and culture also play an important role in the mode of associated living. An individual should acquire capacities and a disposition to contribute meaningfully to culture.

For a more detailed explanation, please refer to the National Curriculum Framework: School Education 2023 (p.45-51, p.88-92, p.101-102, p.116-121)

NATURE OF THE SUBJECT: MATHEMATICS

(Adapted from the CBSE Learning Standards document. Please refer to it here: https://cbseacademic.nic.in/cbe/documents/Learning_Standards_Maths.pdf)
"Mathematics, as an expression of the human mind, reflects the active will, the contemplative reason, and the desire for aesthetic perfection. Its basic elements are logic and intuition, analysis and construction, generality and individuality"- Courant and Robbins

Mathematics has been a part of everyone's life, be it estimates we make in our routine activities or precise calculations for various transactions and fairness in sharing or in describing objects around us. The relevance of mathematics is more than its utilitarian value. It helps us to think and reason about the world around us and take informed decisions, be it at the individual level to cope with life in various spheres of activity or at the societal level to contribute to technological and socio-economic development.

Given these reasons, it is not surprising that mathematics education has been made compulsory at the school level and is one of the first subjects encountered by the learner entering formal schooling. The focus of school mathematics is developing the problem solving and reasoning skills needed to have an organised and progressing society. This includes reflecting on and studying problems and topics which may be perceived as more of an intellectual exercise and not immediately useful at this stage. However, these have unforeseen far-reaching benefits. It must be emphasized that the selection of such study material must be made in a manner such that mathematics will not be a burden to the learner but an engaging and joyful activity.

Mathematical objects and ideas are abstract - created by humans from the needs of science, economics, statistics and any kind of quantitative analysis needed in daily life. That is, they have no physical properties such as size, colour, smell, taste, texture, sound and so on. Mathematical ideas are formed by classifying similarly related and commonly noticed properties. This leads to the pedagogical challenge of making these ideas experiential. For example, Number, which is a root concept is derived by providing experiences of collections of the same number of objects. The concept of addition is built on the concept of number, and it then becomes the pre-requisite concept for viewing multiplication as repeated addition. This in turn builds on to the understanding of higher concepts. Thus, mathematics builds up from the bottom i.e., from axioms and definitions in a structured and hierarchical way as a vast network of interlinked concepts.

It is well recognized how rigid mathematics is, i.e., $2+2=4$ and not 5 or 22 . However, new mathematics can and has been discovered based on $2+2=22$ i.e., based on how the rules are modified. At the same time, this 'rigid' structure is free from perspectives and subjectivity. Mathematical truth, once established and consistent with existing results, lasts forever.

Therefore, after the meaning of various mathematical objects and ideas are understood, one can engage with these, and discover their properties. Thus, with proper facilitation, a learner can be mostly self-dependent in learning mathematics and can even be given a glimpse of how math progresses or branches off if rules are changed.

To communicate mathematical ideas, mathematicians have, over the years, developed the language of mathematics which has vocabulary, symbols, and sentence structure and is characterised by both precision and concision. Mathematical language supports in communicating mathematical ideas or concepts during discussions in the classroom and leads to representing ideas, observing and generalizing patterns, communicating thought processes and justifying their discoveries and learning. However, it does bring its own pedagogical challenges when learners are not conversant in this language or when the language used is not age appropriate.

Assessment in mathematics has to encompass both the nature of mathematics and the difficulties which the learner faces because of it. When assessment is cognizant of the limitations of the learner and the constraints and affordances of the nature of the subject, it enables the learner to harness the power of mathematics and the teacher to enable the learner to do this.

The structured lesson plans in this book are rooted in the vision of the National Education Policy 2020, operationalized by the National Curriculum Framework: School Education 2023, and based on the Learning Outcomes from NCERT's Learning Outcomes at the Secondary Stage. The following content has been adapted from the original documents to provide context and explanation for the pedagogical practice behind the development of these lesson plans.

NCERT Curricular Expectations for the Secondary Stage:

For detailed Learning Outcomes and suggested Pedagogical Processes, please refer to the NCERT Learning Outcomes at Secondary Stage

MATHEMATICS Curricular Expectations

At this stage learners are expected to develop ability and attitude for-

- mathematisation (ability to think logically, formulate and handle abstractions) rather than knowledge of procedures (formal and mechanical).
- mathematical vocabulary.
- consolidation and generalisation of the concepts learnt so far.
- understanding and proving mathematical statements.
- addressing problems that come from other domains such as science and social sciences.
- integration of concepts and skills that the children have learnt into a problem solving ability.
- analysing and constructing the processes involved in mathematical reasoning.
- establishing linkages between mathematics and daily life experiences and across the curriculum.

Aims of Mathematics

Mathematics helps students develop not only basic arithmetic skills, but also the crucial capacities of logical reasoning, creative problem solving, and clear and precise communication (both oral and written). Mathematical knowledge also plays a crucial role in understanding concepts in other school subjects, such as Science and Social Science, and even Art, Physical Education, and Vocational Education. Learning Mathematics can also contribute to the development of capacities for making informed choices and decisions. Understanding numbers and quantitative arguments is necessary for effective and meaningful democratic and economic participation.
Mathematics thus has an important role to play in achieving the overall Aims of School Education. The specific aims of Mathematics Education in this NCF are as follows:
a. Basic Numeracy. Numbers and quantities along with words (language) are the two ways in which human beings understand and interpret the world. Numbers and quantities also play a very important role in day-to-day interactions within a complex society. Fluency in quantifying and performing calculating is essential for basic daily interactions, such as shopping and banking. Mathematics Education in schools should ensure that all students are fluent in basic numeracy. This would include not just fluency in numbers and number operations using Indian numerals, but also the capacities to handle situations that involve space and measurement.
b. Mathematical Thinking. Mathematical thinking involves systematic and logical ways to think about and interpret the world. The capacities for identifying patterns, explaining patterns, quantifying and measuring, using deductive reasoning, working with abstractions, and communicating clearly and precisely are some illustrations of mathematical thinking. Mathematics Education in schools should aim for developing such mathematical thinking in all students.
c. Problem Solving. The capacity to formulate well-defined problems that can be solved through mathematical thinking is an important aspect of learning Mathematics. Clear and precise formulation of problems and puzzles, knowing the appropriate mathematical concepts and techniques that can model the problems, and possessing the techniques and the creativity to solve the problems are core aspects of problem solving. Mathematics Education in schools should aim for developing such problem-solving capacities in all students. Problem solving also develops the capacities of perseverance, curiosity, confidence, and rigour.
d. Mathematical Intuition. Developing an intuition for what should or should not be true in Mathematics is often just as important as the more formal 'paper - pencil' doing of Mathematics. Focusing on the common themes and patterns of reasoning across mathematical areas, guessing correct answers (in terms of, e.g., 'order of magnitude') before working out precise answers, and engaging in informal argumentation before carrying out rigorous proofs are all effective ways of developing such mathematical intuition in students. Developing such mathematical intuition in all students should be one of the aims of Mathematics Education in schools. 270 Part C National Curriculum Framework for School Education
e. Joy, curiosity, and wonder. Discovering, understanding, and appreciating patterns and other mathematical concepts, ideas, and models can require great creativity and often generates great wonder and joy. To see Mathematics as merely calculations and mechanical procedures is very limiting. Mathematics Education in schools should nurture this sense of joy, curiosity, aesthetics, creativity, and wonder in all students.

For more details on the Aims of specific subjects please refer to the NCFSE following pages: English: p234-267; Mathematics: p268-293; Science: p294-319; Social Science: p320-352.

CLASS - 9
 Chapter. 1 NUMBER SYSTEMS

Introduction

https://epathshala.ni
c.in/topic.php?id=09 62 CHO

CURRICULAR GOALS	COMPETENCIES
CG-I: Understanding numbers (natural, whole, integer, rational, irrational and real), ways of representing numbers, relationships amongst numbers, and number sets	C-I.I: Develops understanding of numbers, including the set of real numbers and its properties

Key concepts: 1) Rational Numbers 2) Irrational Number 3) Real Numbers and their Decimal Expansions

[^1]
MIND MAP

PERIOD WISE PLAN

Period No.	Teaching Topic	Learning Outcomes / Objectives
1	Rational Numbers	1. Develop the ability to analyze and differentiate between various types of numbers.
2	To find numbers between any two given rational numbers	1. Skill to find numbers between given two rationales/irrationals.
3	$\sqrt{ }$ non a number line	1. Demonstrate the ability to find numbers between any two given numbers 2. Differentiate andclassify various types of numbers, in collaboration with each other.
4	Representing $\sqrt{2} \mathbf{+} \sqrt{ } 3$ on number line.	1. Able to Design new ways to represent irrational numbers on number line in as many ways as possible. 2. Able to Comprehend that rational numbers and irrationals together form set of Real numbers, through collaborative leaning process.
5	Real numbers - Decimal expansions to distinguish between rational and irrational numbers	1. Classify real numbers into rational and irrational numbers based on their decimalrepresentation. 2. Convert rational numbers in the form p / q to decimalform
6	Rational Numbers in the form of p/q	1. Classifyrealnumbersintorationalandirrationalnumbersbylookingattheirdecimalrepresentation 2. Convert rational numbers given in their decimal form to the formp/q 3. Find irrational numbers between the given rationalnumbers
7	Representation of $\sqrt{ } 9.3$ on number line	1. Represent the given real number on the numberline. 2. Represent $\sqrt{ } \mathrm{x}$ for any positive integer ' n ' on the number linegeometrically.
8	Operations on real numbers and Rationalization	1. Able to identify the rationalizing factor. 2. Able to rationalize thedenominator.
9	Practice Period	1. Various concepts being applied on number system. 2. Recall the concepts and terms being used in chapter to solve thequestions 3. Critically Apply and solve the questions ofspirals.
10	Laws of Exponents	1. Able toExtend laws of exponents for negativepowers. 2. Verify the laws of exponents involving the samebases. 3. Apply the laws of exponents to the realnumbers. 4.Verify the laws of exponents involving different bases but the sameexponents
11	Application of law of exponents.	1. Able to understand the Various laws of exponents to operate on real numbers. 2. Critically apply and extend previous knowledge of exponents to irrational numbers
12	Practice Period	1. Understand Various concepts being applied on number system. 2. Recall the concepts and terms being used in chapter to solve thequestions.

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

Chapter: Number System			
Learning Outcomes \& Indicators/microcompetencies	Teaching-Learning Process This should include activities to facilitate learning along with broad time duration	Pointers for formative assessmentthis should include strategies that will be used to Check for Understanding - e.g., questions/worksheets/experiments /assignments/self-assessment checklists/etc.	Materi: require
C-I.I: Develops understanding of numbers, including the set of real numbers and its properties Recall of Natural Numbers, Whole Numbers. Integers and Rational Numbers	(10Min) prerequisite questions Teacher asks the following question to test Previous knowledge (Teacher note: This is individual work followed by pair sharing and whole group sharing) Teacher will begin by asking a student to count a specific item in the classroom say fans. As the student counts 1, 2, 3 and so on the teacher will reinforce the concept of counting numbers. Teacher will also ask the students to draw a number line and represent the following: 1) $1+4$ (reinforcement of natural numbers/counting Numbers denoted by N willbe given) Teacher asks the following question and testing of previous knowledge happens (Teacher note: This is individual work followed by group work) 2) 3-3 (reinforcement of wholenumbers	1) Is every whole number a Natural number? Give reason for your answer 2) Is every integer a rational number? Give reason for your answer	tps:/lyoutu.b ZYYWFeU?s 18uFhvZyxyl Introductic number systı min. Byju's v

Develop the ability to analyze and differentiate between various types of numbers.	importance of adding 0 to natural number system, natural numbers as a part of whole numbers denoted by W) 3) 2-5 (reinforcement of integers, natural numbers, whole numbers as part of integers). Integers are denoted by Z (coming from Greek word Zahlen, meaning tocount). 4) Identify the numbers between -1 and 1 ? 5. How do we call these numbers? 6. How many such numbers can be identified between -1 and 1 ? 7.How do we represent these numbers? (25 mins) Teacher writes the necessaryInstructions on the Board (Demonstration / Discussion method) Teacher reinforces the following concepts by discussion - different types of numbers - Representation of different number sets - Distinguishing the properties of Natural numbers, whole numbers, Integers, rational numbers with suitable examples - Representation of numbers on Number line. Write difference between rational numbers and integers in your own words. Identify the use of rational numbers in your day-to-day	How many more rational numbers can be identified between 3 and 4? How many more rational numbers can be identified between $3 / 5$ and $4 / 5$? Raghu said every natural number is a whole number. Do you agree with him? Give reason with example. Write a number which is a whole number but not an integer?

life? Activity by Group discussion: (5 mins) Are there any numbers which cannot be expressed in the form of p / q ? Irrational numbers will be introduced.	Flip Learning: Find five rational numbers between 1 and 2 .	
Summative assessment plan- on Q1:Are the following statements true or false? Give reasons for yo 1. Every whole number is a naturalnumber. 2. Every integer is a rationalnumber. 3. Every rational number is aninteger.	ly where relevant ur answers.	
Teachers' reflections and experiences: 1. Did I clearly communicate the lesson objectives to the students? 2. How can I ensure that students understand the objectives and can dem knowledge or skills related to them? 3. Did I use effective instructional strategies to engage students in the less 4. How can I improve the variety and effectiveness of my teaching method different learning styles and needs? 5. How well did I manage the classroom during the lesson?	nstrate them on? to cater to	

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

collaboration with each other.
-1.1 in their notebook in the class with the help of
their teacher. The teacher would ensure that each
student tries to be independent at the work as well
as be under the teacher's guidance.
Closure: 5 min
A short oral test would be taken to check proper
assimilation of the topic discussed.

Summative assessment plan- only where relevant

Q1 :find 6 rational numbers between 3 and 4
Q 2 :Find five rational numbers between $3 / 5$ and 4/5.

Teachers' reflections and experiences:

i. . Were there any disruptions or behavioral issues that I need to address?
ii. What strategies can I implement to improve classroom management?
iii. Did the students actively participate and show interest in the lesson?
iv. How can I increase student engagement and create a more interactive learning environment?
v . Did I assess student understanding effectively during the lesson?

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

Class: ${ }^{\text {th }}$ Total no. of perio Subtopic:Repres			
Learning Outcomes \& Indicators/microcompetencies	Teaching-Learning Process This should include activities to facilitate learning along with broad time duration	Pointers for formative assessmentthis should include strategies that will be used to Check for Understanding - e.g., questions/worksheets/experiments /assignments/self-assessment checklists/etc.	Material required
C-I.I: Develops understanding of numbers, including the set of real numbers and its properties Able to represent the given real number on the number line.	(10 mins) Demonstration by Facilitator on Black Board Ask learners to give the value of $\sqrt{2}$ and learners give its value and reinforcement of irrational numbers will be done. Students will be asked if they can plot it on a number line. Why or why not? The class will begin with an activity on constructing the 'Square Root spiral' on an A4 size colored sheet.	Activity: Each learner will be instructed to follow the following algorithm to construct the square root spiral. 1) Take a point O on a sheet of paper and drawa line segment OA of unitlength. 2) Draw $A B$ perpendicular to $O A$ of unit length. Join OB. 3) Now, draw a line segment $B C$ perpendicularto $O B$ of unit length and joinOC. 4) Again, draw CD perpendicular to OC ofunit length and joinOD.	

Summative assessment plan- only where relevant

Q1: Represent $\sqrt{3}$ on the number line.

Teachers' reflections and experiences:

1. Did the students actively participate and show interest in the lesson?
2. How can I increase student engagement and create a more interactive learning environment?
3. Did I assess student understanding effectively during the lesson?
4. Did I provide timely and constructive feedback to guide their learning?
5. How can I improve my assessment and feedback practices?

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

Class: $\mathbf{9}^{\text {th }}$ Total no. of peri Subtopic:Repres	Subject: Mathematics for this chapter: I 2 Period no :4/I2 ng $\sqrt{ } 2+\sqrt{ } 3$ on number line.	Chapter: Number System	
Learning Outcomes \& Indicators/microcompetencies	Teaching-Learning Process This should include activities to facilitate learning along with broad time duration	Pointers for formative assessmentthis should include strategies that will be used to Check for Understanding - e.g., questions/worksheets/experiments /assignments/self-assessment checklists/etc.	Material required
C-I.I: Develops understanding of numbers, including the set of real numbers and its properties Able to Design new ways to represent irrational numbers on number line in as many ways as possible.	(15 mins) Warm up Quick revision on the previous concept would be taken up. Ram says $\sqrt{ } 256$ is an irrational number. Do you agree with him? Give reasons. $A B C D$ is a square with 2 cm . Is BC a rational number? Discuss in detail.	The students will solve the questions from NCERT book, solved examples before Ex 1.2 in their notebook in the class with the help of their facilitator. The facilitator would take rounds and help the students in solving the questions. Learners will be asked to show $\sqrt{5}$ on the number line	

Able to Comprehend that rational numbers and irrationals together form set of Real numbers, through collaborative leaning process.	(Discussion of topic through Collaborative Learning: $\mathbf{2 5}$ min (Critical Thinking, Collaboration) Teacher makes the students into groups and guides the learners to follow the given steps Step 1: Represent $\sqrt{ } 2$ on number line Step2: Represent $\sqrt{ } 3$ on number line Step3: Represent $\sqrt{2}+\sqrt{3}$ on number line	Represent $\sqrt{ } 5-\sqrt{ } 2$ on number line	4 min. (Digital Teacher) video on square root spiral
Q1: Represent $\sqrt{ } 5$ Advanced Learners Represent $\sqrt{ } 7$ on the n	Summative assessment plan the number line.	nly where relevant	
Teachers' reflect 1. 2. 3. 4. 5.	s and experiences: at were my strengths during the lesson? at areas can I improve as a teacher? can I continue to develop my teaching skills and I encourage self-reflection and metacognition amo can I incorporate more opportunities for students	ices? tudents? flect on their learning and assess the	rogress?

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

Class: $9^{\text {th }}$ Total no. of peri Subtopic:Real n	Chapter: Number System veen rational and irrational numbers		
Learning Outcomes \& Indicators/microcompetencies	Teaching-Learning Process This should include activities to facilitate learning along with broad time duration	Pointers for formative assessmentthis should include strategies that will be used to Check for Understanding - e.g., questions/worksheets/experiments lassignments/self-assessment checklists/etc.	Material required
C-I.I: Develops understanding of numbers, including the set of real numbers and its properties - Classify real numbers into rational and irrational numbers based on their	(10 mins) Warm up Demonstration by facilitator on Black Board (Interactive Method) Facilitator will ask the following ques fromthe learners Find the decimal expansions of $10 / 3,7 / 8$ and $1 / 7$. Teacher will ask the learners if a rupee is divided among 2 people how much will each get and then the division among four and three people.	The facilitator explains (i) The remainders either become 0 after a certain stage, or start repeatingthemselves. - $1 / 2=$ \qquad (terminates after \qquad digit) - $3 / 4=$ \qquad (terminates after \qquad digits) - $5 / 8=$ \qquad (terminates after \qquad digits) (ii) The number of entries in the repeating string of remainders is less than the divisor	\square

decimalrepresenta tion.

Convert rational numbers in the form p / q to decimalform

(25 min) Demonstration by learners on Board

The facilitator asks some learners to come to the board and ask them to show the division of the above asked rational numbers.

Facilitator will ask the learners to do the following questions in their note books

(5 mins) In class Exercise: closure

Look at several examples of rational numbers in the form $\frac{p}{q}(q \neq 0)$, where p and q are integers with no common factors other than 1 and having terminating decimal representations (expansions). Can you guess what property q must satisfy?

You know that $\frac{1}{7}=0 . \overline{142857}$. Can you predict what the decimal expansions of $\frac{2}{7}, \frac{3}{7}$,
$\frac{4}{7}, \frac{5}{7}, \frac{6}{7}$ are, without actually doing the long division? If so, how?
(in $1 / 3$ one number repeats itself and the divisor is 3 , in $1 / 7$ there are six entries 326451 in the repeatingstring of remainders and 7 is thedivisor).
(iii) If the remainders repeat, then we get a repeating block of digits in the quotient (for 1/ 3, 3 repeats in the quotient and for $1 / 7$, we get the repeating block 142857
in thequotient).

- $1 / 3=$ \qquad - (repeating \qquad -
indefinitely, written as \qquad)
- $2 / 11$ = \qquad (repeating indefinitely, written as 0.18)
- $7 / 6=$ \qquad (repeating
\qquad indefinitely, written as \qquad

So, on division of rational in the form p by q, two main things happen - either the remainder becomes zero or never becomes zero and we get a repeating string of remainders. - Concept that every rational number has a decimal representation inthe form of terminating decimals ornonterminating but repeating decimal will be given.
iv) An irrational number has a non-
terminating and non-recurring decimal representation.eg $\sqrt{ } 2$

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class).

1 Write three numbers whose decimal expansions are non-terminating non-recurring.'
2. Find three different irrational numbers between the rational numbers $\frac{5}{7}$ and $\frac{9}{11}$.

Teachers' reflections and experiences:

1. How well did I manage the classroom during the lesson?
2. Were there any disruptions or behavioral issues that I need to address?
3. What strategies can I implement to improve classroom management?
4. Did the students actively participate and show interest in the lesson?
5. How can I increase student engagement and create a more interactive learning environment?

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

Class: $9^{\text {th }}$ Total no. of period Subtopic:Represen	Subject: Mathematics this chapter: I 2. Period no :7/I2 on of $\sqrt{ } 9.3$ on number line	Chapter: Number System	
Learning Outcomes \& Indicators/microcompetencies	Teaching-Learning Process This should include activities to facilitate learning along with broad time duration	Pointers for formative assessment- this should include strategies that will be used to Check for Understanding - e.g., questions/worksheets/experiments/assign ments/self-assessment checklists/etc.	Material required
C-I.I: Develops understanding of numbers, including the set of real numbers and its properties Represent the given real number on the numberline. Represent $\sqrt{\mathrm{x}}$ for any positive integer ' n ' on the number linegeometrically.	(5 mins) Demonstration by facilitator on Black Board (Interactive Method) Learners will recall different visualization representing $\sqrt{ } \mathrm{x}$ on the number line. Like Pythagoras theorem and spiral method. They will now observe another visualization. Represent $\sqrt{ } \mathrm{x}$ on the number line (25 min) Demonstration by facilitator on Board Learners will be given following algorithm to find the square root of a positive real number on the number line 1. Draw a line segment of lengthx. 2. From the point B, mark a distance of 1 unit and mark the new point asc. 3. Find the midpoint of AC and markthat point asO. 4. Draw a semicircle with center O and radius $O C$. 5. Draw a line perpendicular to $A C$ passing through B and intersecting the semi-circle atD.	Here are some other examples of Pythagorean triples: 1. $(5,12,13): 5^{2}+12^{2}=13^{2}$ 2. $(8,15,17): 8^{2}+15^{2}=17^{2}$ 3. $(7,24,25): 7^{2}+24^{2}=25^{2}$ $$ Pythagorean Triples	https://youtu.be/TI xmNNg74?si=POF H0tENIK9SP 4 min . SH SIR CLASSES video on How to represent root 9.3 on numbe line

6. Length $B D=\sqrt{ } \mathrm{X}$ 7. With b as center and BD as radius draw an arc which cuts the number line at point E. NowBE= V . The teacher will also prove how $\mathrm{BD}=\sqrt{ } \mathrm{X}$ on the BB using Pythagoras theorem.
Activity: (10Minutes) Represent geometrically the following number on the number line: $\sqrt{ } 5.6$

Summative assessment plan- only where relevant

Represent $\sqrt{ } 11.4$ and $\sqrt{10.6}$ on the number line.

Teachers' reflections and experiences:

1. Was the pacing of the lesson appropriate?
2. Did I cover all the planned content without rushing or leaving gaps?
3. How can I better manage the time allocated for each activity?
4. What were my strengths during the lesson?
5. In what areas can I improve as a teacher?

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

C	Subject: Mathematics	Chapter: Number System	
Total no. of periods for this chapter: 12 Period no:8/I2			
Learning Outcomes \& Indicators/microcompetencies	Teaching-Learning Process This should include activities to facilitate learning along with broad time duration	Pointers for formative assessment- this should include strategies that will be used to Check for Understanding - e.g., questions/worksheets/experiments/assig nments/self-assessment checklists/etc.	Material required
C-I.I: Develops understanding of numbers, including the set of real numbers and its properties	(10 mins) Warm up Demonstration by facilitator on Black Board (Interactive Method)	Through examples the following facts will be derived	-
	Teacher will reinforce the concept of rational numbers being closed w.r.t addition, subtraction, multiplication and division.	1) The sum or difference of a rational number and an irrational number isirrational.	
	Also, rational numbers satisfy commutative, associative and distributive laws for addition and multiplication. However, the sum, difference, product, quotients of irrational numbers are	2) The product or quotient of a non-zero rational number with an irrational number is irrational.	$\begin{aligned} & \text { IDSN4CetgtE } \\ & \text { ?si=Jt9pVKbQ } \\ & \text { e vrxQy } \end{aligned}$
	not always irrational though they also satisfy the commutative, associative and distributive laws of addition and subtraction, which will be done via interaction with learners. (20 min) Demonstration by facilitator on Board	3) If we add, subtract, multiply or divide two irrationals, the result may be rational or irrational. Learners will give quick response to	10 min . (Topp class 8-10) Video relating to rationalize the
Able to identify the rationalizing factor.	Can we represent $\frac{1}{\sqrt{2}}$ on number line? Can we convert the denominator of the above	$\overbrace{-\sqrt{b})=}(\sqrt{a}+\sqrt{b})(\sqrt{ } a$	denominator
Able to rationalize thedenominator.	Can we convert the denominator of the above fraction into a rational number? Rationalizing the denominator	$\begin{gathered} -\sqrt{b})= \\ (\sqrt{a}+\sqrt{b})^{2}= \\ (\sqrt{a}-\sqrt{b})^{2}= \end{gathered}$	
	Teacher explains the process of rationalizing the denominator and proves $\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}$ Now make the students understand how to represent	Teacher will then explain that Rationalization is the process to remove the surds in the denominator of a fraction.	

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

Summative assessment plan- only where relevant

Represent square root of 7 and 9 by constructing a square root spiral.

Teachers' reflections and experiences:

1. How can I better manage the time allocated for each activity?
2. What were my strengths during the lesson?
3. In what areas can I improve as a teacher?
4. How can I continue to develop my teaching skills and practices?
5. Did I encourage self-reflection and metacognition among students?

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

exponents involving different bases but the sameexponents	$x^{-3}=1 / x^{3}$ And the law about Fractional Exponents: Activity: (5 minutes) Question 1: Simplify the following expressions: (i) $(3 / 4)^{8} \times(4 / 3)^{5}$ (ii) $(5 / 7)^{5} \times(5 / 7)^{-6}$ Question 2: Express each of the following as rational numbers: (i) $(4 / 5)^{4}$ (ii) $(64 / 81)^{3 / 2}$ (iii) $(-2 / 5)^{-4}$	$\begin{aligned} & x^{m} x^{n}=x^{m+n} \\ & x^{m} / x^{n}=x^{m-n} \\ & \left(x^{m}\right)^{n}=x^{m n} \\ & (x y)^{n}=x^{n} y^{n} \\ & (x / y)^{n}=x^{n} / y^{n} \\ & x^{-n}=1 / x^{n} \\ & \\ & \pi^{m}=\sqrt[m]{x^{m}} \\ & =(\sqrt[n]{x})^{m} \end{aligned}$

Summative assessment plan- only where relevant
Find:
(i) $64^{\frac{1}{2}}$
(ii) $32^{\frac{1}{5}}$
(iii) $125^{\frac{1}{3}}$
Simplify :
(i) $2^{\frac{2}{3}} \cdot 2^{\frac{1}{5}}$
(ii) $\left(\frac{1}{3^{3}}\right)^{7}$
(iii) $\frac{11^{\frac{1}{2}}}{11^{\frac{1}{4}}}$

Teachers' reflections and experiences:

1. Did the students actively participate and show interest in the lesson?
2. How can I increase student engagement and create a more interactive learning environment?
3. Did I assess student understanding effectively during the lesson?
4. Did I provide timely and constructive feedback to guide their learning?
5. How can I improve my assessment and feedback practices?

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

on real numbers. Critically apply and extend previous knowledge of exponents to irrational numbers.	monthly planner of Exercise 1.5 in their Math HW notebook. Closure: 5 min Summarization would be taken to check proper assimilation of the topic discussed.		
1. Find: 2. Find: 3. Simplify:	Summative assessment plan- o (i) $64^{\frac{1}{2}}$ (ii) $32^{\frac{1}{5}}$ (iii) $125^{\frac{1}{3}}$ (i) $9^{\frac{3}{2}}$ (ii) $32^{\frac{2}{5}}$ (iii) $16^{\frac{3}{4}}$ (iv) $125^{\frac{-1}{3}}$ (i) $2^{\frac{2}{3}} \cdot 2^{\frac{1}{5}}$ (ii) $\left(\frac{1}{3^{3}}\right)^{7}$ (iii) $\frac{11^{\frac{1}{2}}}{11^{\frac{1}{4}}}$ (iv) $7^{\frac{1}{2}} \cdot 8^{\frac{1}{2}}$	y where relevant	
Teachers' reflecti 1. How ca 2. What w 3. In what 4. How ca 5. Did I en	ons and experiences: I better manage the time allocated for each activity? re my strengths during the lesson? areas can I improve as a teacher? I continue to develop my teaching skills and practices? courage self-reflection and metacognition among studen		

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

Class: $9^{\text {th }}$ Total no. of periods Subtopic:Practice	Subject: Mathematics for this chapter: 12 Period no $: 12 / 12$ Period	Chapter: Number System	
Learning Outcomes \& Indicators/microcompetencies	Teaching-Learning Process This should include activities to facilitate learning along with broad time duration	Pointers for formative assessment- this should include strategies that will be used to Check for Understanding - e.g., questions/worksheets/experiments/assig nments/self-assessment checklists/etc.	Material required
C-I.I: Develops understanding of numbers, including the set of real numbers and its properties	Recapitulation: $5 \mathbf{~ m i n}$ Oral Test would be taken up. Discussion of topic through Collaborative Learning: $\mathbf{2 0 \mathrm { min }}$ With out actual division decide which of following rational numbers have terminating decimal representation? (i) $33 / 375$ (ii) $15 / 28$ (iii) $16 / 45$ (iv) $12 / 35$ (v) $80 / 27$ (vi) $123 / 1250$		
Understand 3. Various concepts being applied on number system. 4. Recall the concepts and terms being used in chapter to solve thequestions	Represent $\frac{8}{5}$ and $\sqrt{20}$ on a number line. (a) Represent $\sqrt{5.2}$ on a number line. (b) Visualize 0.436 on the number line Insert 6 rational numbers between $\frac{-2}{3}$ and $\frac{3}{4}$ Find two irrational numbers between $\sqrt{3}$ and 2 . Rationalise the denominator of $\frac{1}{1-\sqrt{7}}$ Closure: 15 min Summarization, preferably by a student, would be taken to check	Independent Practice: Students would try Level 2 questions from the spiral. Simplify the following: (i) $\sqrt{45}-3 \sqrt{20}+4 \sqrt{5}$ (ii) $\frac{\sqrt{24}}{8}+\frac{\sqrt{54}}{9}$ (iii) $\sqrt[4]{12} \times \sqrt[7]{6}$ (iv) $4 \sqrt{28} \div 3 \sqrt{7} \div \sqrt[3]{7}$ (v) $3 \sqrt{3}+2 \sqrt{27}+\frac{7}{\sqrt{3}}$ (vi) $(\sqrt{3}-\sqrt{2})^{2}$ (vii) $\sqrt[4]{81}-8 \sqrt[3]{216}+15 \sqrt[5]{32}+\sqrt{225}$ (viii) $\frac{3}{\sqrt{8}}+\frac{1}{\sqrt{2}}$ (ix) $\frac{2 \sqrt{3}}{3}-\frac{\sqrt{3}}{6}$	

5. Critically Apply and proper assimilation of the topic discussed.
solve the questions
ofspirals.

Summative assessment plan- only where relevant

1. If $x=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$ and $y=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$, find the value of $x^{2}+y^{2}+x y$.
2. If $x=\frac{2-\sqrt{5}}{2+\sqrt{5}}$ and $y=\frac{2+\sqrt{5}}{2-\sqrt{5}}$, find the value of $x^{2}-y^{2}$.

Teachers' reflections and experiences:

1. Did I assess student understanding effectively during the lesson?
2. Did I provide timely and constructive feedback to guide their learning?
3. How can I improve my assessment and feedback practices?
4. Was the pacing of the lesson appropriate?
5. Did I cover all the planned content without rushing or leaving gaps?

WORKSHEETS

CHAPTER.I NUMBER SYSTSEMS - WORK SHEET.I

CHAPTER.I NUMBER SYSTSEMS - WORK SHEET. 2

CHAPTER.I NUMBER SYSTSEMS - WORK SHEET. 3

Remedial Teaching:

The following topics has reviewed by taking reteaching classes:

1. Introduction to number system.
2. Irrational Number.
3. Real Number and Their Decimal Expansion.
4. Square root spiral
5. Representation of Real Number on Number Line.
6. Operations on Real Number.
7. Laws of Exponents for Real Number
with explanation of problems and examples.

2.POLYNOMIALS

0962CH02
[Type or Scan QR Code]
[Goto https://epathshala.nic.in]
https://epathshala.nic.in/topic-d.php?id=0962CH02

THE FOLLOWING CURRICULAR GOALS (CG) AND COMPETENCIES (C) WILL BE DEVELOPED THROUGH THIS CHAPTER

CURRICULAR GOALS(CG)	COMPETENCIES (C)
CG-3: Discovers and proves algebraic identities and the models real- life situations in the form of equations to solve them	3.I: States and motivates/proves remainder theorem, factor theorem, and division algorithm C-3.2: Models and solves context utilized problems using
equations (e.g., simultaneous linear equations in two variable	
single polynomial equations) and draws conclusions about a	
situation being modelled	

Key concepts: 1. Introduction to Polynomial 2. Polynomials in one variable 3. Zeroes of a polynomial
4.Factorization of a polynomial 5. Algebraic identities

MIND MAP

PERIOD WISE PLAN

Learning Outcome:Demonstrates strategies of finding roots and determining the nature of roots of a quadratic equation.

$\begin{aligned} & \text { PERIOD } \\ & \text { NO. } \end{aligned}$	TEACHING TOPIC	LEARNING OUTCOMES/Objectives
1	1.Introduction to Polynomial 2. Polynomials in one variable 3. Zeroes of a polynomial	Differentiates between general algebraic expressions and polynomials. Classifies polynomials on the basis of terms and degree: linear, quadratic and cubic and number of terms: monomial, binomial, trinomial.
2	Types of polynomials (based on number of terms and based on degree)	1.Find the degree of any polynomial and classifies the polynomials as linear, quadratic and cubic 2.Identifies degree of a polynomial
3	Zeroes of a polynomial (linear)	1) Finds the value of polynomial 2) Find the zero of a linear polynomial 3) Verify the given value is zero or not
4	Problems related to zeroes of polynomials	1) Finds the value of polynomial 2) Find the zero of a linear polynomial 3) Verify the given value is zero or not
5	Practice period for the above concepts	Solve Higher order and competency based and value-based questions.
6	Introduction to Remainder theorem and Factor theorem	Identifies/classifies polynomials among algebraic expressions in order to apply appropriate algebraic identities to factories them Using the Remainder theorem, calculate division of $p(x)$ by a linear polynomial ' $x-a$ ' and find the remainder is $p(a)$
7	Remainder theorem and Factor theorem	Identifies/classifies polynomials among algebraic expressions in order to apply appropriate algebraic identities to factories them Using the Remainder theorem, calculate division of $p(x)$ by a linear polynomial ' $x-a$ ' and find the remainder Relates the factor theorem to the remainder theorem. Division of polynomial with linear polynomial Understanding Remainder theorem and Factor theorem.

		Solving questions using Remainder theorem and Factor theorem
8	Problems on Remainder theorem and Factor theorem	Identifies/classifies polynomials among algebraic expressions in order to apply appropriate algebraic identities to factories them Using the Remainder theorem, calculate division of $p(x)$ by a linear polynomial ' $x-a$ ' and find the remainder is $p(a)$ and verify using long division. Relates the factors of a polynomial with its zeroes and vice versa Uses given information about the zero or factors of a polynomial to factories it
9	Problems on Remainder theorem and Factor theorem	Identifies/classifies polynomials among algebraic expressions in order to apply appropriate algebraic identities to factories them
10	Remainder Theorem Practice/Remedial Class	Identifies/classifies polynomials among algebraic expressions in order to apply appropriate algebraic identities to factories them Using the Remainder theorem, calculate division of $p(x)$ by a linear polynomial ' $x-a$ ' and find the remainder is $p(a)$ and verify using long division.
11	Finding the value of ' k ' type questions	Application of Remainder theorem and Factor theorem
12	Expanding and factorizing using Algebraic Identities	Identifies/ classifies polynomials among algebraic expressions and factors them by applying appropriate algebraic identities. Derives proof of algebraic identities $(x+y+z)^{2}$; $(x+y)^{3}$; $(x-y)^{3}$ Applies algebraic identities to factories polynomials
13	Algebraic identities: $(x+y)^{3}$ and ($x-$ y) ${ }^{3}$	Identifies/ classifies polynomials among algebraic expressions and factories them by applying appropriate algebraic identities.
14	Algebraic identities $-\left(x^{3}+y^{3}\right)$ and $\left(x^{3}-y^{3}\right)$	Identifies/ classifies polynomials among algebraic expressions and factories them by applying appropriate algebraic identities. Apply the concept of factorization to solve daily life situations Derive the proofs of identities of algebraic expressions. Factorizes a polynomial using the appropriate identity

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

Class: $9^{\text {th }}$	Chapter: polynomials		
Total no. of periods for th Subtopic: (i) Introduction	is chapter:14 Period no :1/14	ro of a polynomial	
Learning Outcomes \& Indicators/microcompetencies	Teaching-Learning Process This should include activities to facilitate learning along with broad time duration	Pointers for formative assessment- this should include strategies that will be used to Check for Understanding - e.g., questions/worksheets/experiments/as signments/self-assessment checklists/etc.	Material required
CG3: Discovers and proves algebraic identities and models real life situations in the form of equations to solve them. C 3.1: States and motivates/proves remainder theorem, factor theorem, and division algorithm Differentiates between general algebraic expressions and polynomials. Classifies polynomials on the basis of terms and degree: linear, quadratic and cubic and number of terms: monomial, binomial,	Teacher asks the following question and testing of Previous knowledge happens (Teacher note: This is individual work followed by pair sharing and whole group sharing) (10 min) I. Write a mathematical expression for the following: a. Ram is making packets of buttons. He has packed 2 packets and 3 extras are left. b. Shamla packs lunch box for a company. She packs 3 rotis in one lunch box. At end shed finds I roti less for a box. 2. In above expression find the terms. 3. Give some examples of terms. 4. Write 5 algebraic expressions of your own. 5. Identify the constants in the following expressions? $2 x+5,3 x+9,4 x^{2}-8 x^{3}-4$ (Teacher introduce the topic through asking questions) (10 min) In pairs, write: I. Two expressions with (a constant) \times (a variable), where constant is a number.	$1.5 x+8 y-12$ Identify the variables in the above expression 2.Write any 5 algebraic expressions?	https://yout u.be/VIW9 E59uUy4?si ElhOnMd6

trinomial.	2. Two expressions with (a constant) X (a variable), where constant takes a fixed value that is known. Teacher draws the below figure: I. What is the area of a square with the side ' x ' unit? Is x^{2} an algebraic expression? (Teacher asks the students to take any 2D figure and prepare algebraic expression using it) (10 min) 2. Identify the constants, coefficients, and variables in the expression. $C=2 \pi r$ Do the following activity: What do you call a constant that is multiplied by a variable. what is the coefficient of x in 3 x . observe the following box and answer the following questions	Observe the above figure and identify the following I. Algebraic expression 2. Terms 3. Number of terms 4. Coefficient of x 5. constant Formative Assessment: I. Write 3 algebraic expressions which are not polynomials?2. 2. Write the coefficient of each term $-x^{3}+7 x^{2}-8 x+9$ 3. How can you justify that 9 inthe above polynomial is a constant? 4. Why x^{-5} is not a polynomial?	K891BF' Teachı can use 1 12 mir videom: by Tut Mate a referen (or tc explain) intro c Polynon s in det:

I. Identify the expressions whose powers are whole numbers? What are such expressions called?
2. Identify the expressions whose powers are not whole numbers? What are such expressions called?
Activity (10 min)
I. Identify polynomials in the following:

$$
\begin{gathered}
x^{2}-5 x+7, \sqrt{2} t+\frac{1}{t}, 3 x^{3}-5 y^{2}+7, \\
t^{3}-t^{2}-t, x^{50}+y^{100}-t^{0}
\end{gathered}
$$

Write which among them are polynomials in one variable.
2. Write the 3 examples for - Binomial, Polynomial, monomial, trinomial
I. Match polynomial to its type:

Set $A-2 x^{3}+5 x+3,-4 x, y+2,3 y^{3}+2 y^{2}-$ $7 y-2$
Set B - Binomial, Polynomial, monomial, trinomial
2. Write any five polynomials. Share it with your friend next to you. Tell the type of polynomials that your friend has framed.

Assignment:

I. IGive examples of polynomials.

| | 2. Is 2, -5, 7, Are they polynomials? If so,
 what do you call such polynomials?
 Is 0 a polynomial? Explain |
| :--- | :--- | :--- |
| Summative assessment plan- only where relevant
 1. Write any 3polynomials with 4 terms.
 2. In the polynomial $a_{3} y^{3}+a_{2} y^{2}+a_{1} y+a_{0}$, Identify the constant term and coefficient of y^{3}.
 3. Write a polynomial whose sum of coefficients is 0. | |
| Teachers' reflections and experiences: | |

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

Class: ${ }^{\text {th }}$	Subject: Mathematics	Chapter: Polynomials	
Total no. of periods for t Subtopic: Types of polyn	s chapter:14 Period no :2/14 mials (based on number of terms and based on degre	ree)	
Learning Outcomes \& Indicators/microcompetencies	Teaching-Learning Process This should include activities to facilitate learning along with broad time duration	Pointers for formative assessment- this should include strategies that will be used to Check for Understanding - e.g., questions/worksheets/experiments/as signments/self-assessment checklists/etc.	Material required
CG3: Discovers and proves algebraic identities and models real life situations in the form of equations to solve them. C 3.I: States and motivates/proves remainder theorem, factor theorem, and division algorithm Learning outcome:	Testing of Prerequisite knowledge 5 min Whole class discussion identify the polynomials $x^{2}+5 x+6,5 x^{7}-8 x^{4}+9 x+8, x+\frac{1}{x}, x^{-10}, 0,3,4 x^{-1}$ What is the coefficient of \mathbf{x}^{2} in the polynomial $x^{3}-5 x^{2}-6 x-9$ What is the leading coefficient in the polynomial $2 x^{5}-3 x^{4}-7 x^{3}+9$ Identify coefficients and constant in the following figure and also write number of terms	Types of polynomials both terms and based on degree slips flash cards	https://yout u.be/bhHm c YOIEc?si =cs)2MfiEy KgQaRSG

Identifies/ classifies polynomials among algebraic expressions and factories them by applying appropriate algebraic identities. Learning objectives: I.Find the degree of any polynomial and classifies the polynomials as linear, quadratic and cubic 2.Identifies degree of a polynomial	Introduction of the topic: whole class activity minutes) Look at the following polynomials: $p(x)=3 x^{7}+4 x^{6}-2 x^{2}+5 x-3$ $r(y)=5 y^{6}-4 y^{3}+y^{2}+1$ $f(t)=3-2 t^{2}+5 t^{3}$ $q(m)=7$ $f(x)=5+3 x-9 x^{2}$ $p(z)=2 z-5$ What is the term with the highest power of x ? What is the exponent in that term?	Look at the polynomial and answer $5 x^{4} y^{3}+3 x^{2}-4 y^{8}-2 x^{2} y$ Degree of each term Leading term Degree of polynomial Coefficients Leading Coefficient Complete the table	Teacher can use 1 7 min. video to explain/r force the topic typ of polynom prepares by Let'st

The teacher introduces the degree of polynomials, non zero constant polynomials and zero polynomials

What is the degree of a non-zero constant polynomial?
What is the degree of the zero polynomial?

Activity:

Given the polynomial, identify the coefficients and degree of each term:
$4 x^{4}+5 x^{2}+8-3 x-x^{3}$

First term:	degree $=\square$	coefficient $=\square$
	Second term:	degree $=\square$
Third term:	degree $=\square$	coefficient $=\square$
	coefficient $=\square$	
Fourth term:	degree $=\square$	coefficient $=\square$
Fifth term:	degree $=\square$	coefficient $=\square$

What is the leading coefficient?
What is the degree of the leading term?
What is the degree of the polynomial? \qquad

Name of the polynomial	No.of Terms	Example
Monomial		
Binomial		
Trinomial		

Fill the table and write your observation

Degre e	Maximum No. of Terms in the Polynomial
I	
3	
7	

Now observe the polynomials
$p(x)=4 x+5$,
$q(y)=2 y$,

Write the general form of a quadratic polynomial.
Teacher Note: Teacher should ensure that the students to identify the general form of the quadratic polynomial Is

$$
a x^{2}+b x+c(\mathrm{a} \neq 0)
$$

Now consider the following polynomials

$$
3 x^{3}+2 x^{2}+5,4 x^{3}-3 x^{2}-3 x-\pi, x^{2}, x^{3}+\frac{5}{2} x^{2}-9
$$

What is the degree of each polynomial?

How many terms do you think a cubic polynomial in one variable can have?

Write a general form of a cubic polynomial.

Teacher Note: Teacher should ensure that the students to identify the general form of the cubic polynomial Is $a x^{3}+b x^{2}+c x+d$ where $(\mathrm{a} \neq 0)$

Recapitulation:

(5 minutes)

Classify the polynomials by degree and number of terms

Poljnomial	Degree	Classifiby degree	Classifiby mmber of erms
5			
$2 x-4$			
$3 x^{2}+x$			
$x^{3}-4 x^{2}+1$			
$3 x^{4} \cdot 4 x^{3}+6 x^{2}-7$			
$8 x^{7}-7 \mathrm{x}-9$			

*

Formative assessment:
I.what is the degree of zero polynomial?
2. Write the coefficients of x^{2} in each of the following:
(i) $2+x^{2}+x$ (ii) $2-x^{2}+x^{3}$ (iii) $\frac{\pi}{2} x^{2}+5$
3. Give one example each of a binomial of degree 35 , and of a monomial of degree 100 .

By observing linear, quadratic and cubic polynomial write general form of a nth degree polynomial

Summative assessment plan- only where relevant
I.what is the degree and coefficient of x^{3} the polynomial $7 x^{5}-4 x^{3}+3 x^{2}+2 x-5$
2. Classify the following as linear, quadratic and cubic polynomials.
(i) $x^{2}+x$ (ii) $x-x^{3}$ (iii) $y+y^{2}+4$ (iv) $I+x$
(v) $3 t$ (vi) r^{2} (vii) $7 x^{3}$
3. Sheetal says she could write a binomial with degree 2. Do you agree with her. Explain with an example.

Value based question: Dr.BR Ambedkar gurukulam karapudi students wanted to donate some amount to old people. So, in class IX $\frac{1}{8}$ times the square of the total number of students plan to donate to people above the age of $80, \frac{7}{8}$ the time the number of students pan to donate only to women while 15 students plan to donate for differently-abled people.

Based on the above information, answer the following questions.
I. Using the above information, express the number of students donated as a polynomial $p(x)$ if the total number of students is x.
2. Find the coefficient of x in the polynomial.
3. Name the type of polynomial based on degree and based on terms.
4. Value of $p(x)$ at $x=40$

Teachers' reflections and experiences:

I.Did the lesson plan align with the curricular goals and competencies? If not How could be adjusted for better alignment?
2.How well did the pedagogical Strategies engage students and promote active participation in the learning process?
3.How well Did the assessment strategies measure student understanding and achievement of the learning outcomes?
4.How effective were the Materials and resources used in the lesson?
5.Did the lesson incorporate formative assessment Strategies to guide pedagogy and provide timely feedback to students?

Total no. of periods for this chapter:14 Period no: 3/14
Key concepts: 1. Introduction to polynomial 2. Types of polynomials 3. zeroes of a polynomial

4.Reminder Theorem 5. Factor Theorem 6. Algebraic identities

Subtopic: Zeroes of a polynomial (linear)

Learning Outcomes \& Indicators/microcompetencies	Teaching-Learning Process This should include activities to facilitate learning along with broad time duration				Pointers for formative assessment- this should include strategies that will be used to Check for Understanding - e.g., questions/worksheets/experiments/as signments/self-assessment checklists/etc.	Material required
CG3: Discovers and proves algebraic identities and models real life situations in the form of equations to solve them. C 3.I: States and motivates/proves remainder theorem, factor theorem, and division algorithm	Teacher asks the following question and testing of Previous knowledge happens (Teacher note: This is individual work followed by pair sharing and whole group sharing I. Individually complete the table. (10 min .)				Find $p(0), p(1)$ and $p(2)$ for each of the following polynomials: (i) $p(y)=y^{2}-y+1$ (ii) $p(t)=2+t+2 t^{2}-t 3$ (iii) $p(x)=x^{3}$ (iv) $p(x)=(x-1)(x+1)$	
	Degree	Name	Example	Number of terms		
	2					
	3					
	4					

Summative assessment plan- only where relevant

I. Identify $\mathrm{x}=-\mathrm{a} / \mathrm{b}$ is zero of which polynomial $\mathrm{p}(\mathrm{x})=\mathrm{ax}+\mathrm{b}$ or $\mathrm{q}(\mathrm{x})=\mathrm{ax}-\mathrm{b}$.
2. Show that $m=-2$ is zero/root of the polynomial $q(m)=m+2$.

Teachers' reflections and experiences:

I.Did the lesson plan align with the curricular goals and competencies? If not How could be adjusted for better alignment?
2.How well did the pedagogical Strategies engage students and promote active participation in the learning process?
3. How well Did the assessment strategies measure student understanding and achievement of the learning outcomes?
4.How effective were the Materials and resources used in the lesson?
5.Did the lesson incorporate formative assessment Strategies to guide pedagogy and provide timely feedback to students?

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

	Higher order thinking question I. $f(x)=x^{3}-6 x^{2}+11 x-6$ 2. Find $f(1), f(-1), f(2), f(-2), f(3), f(-3), f(6)$ and $f(-$ 3. Observe which of the above are equal to zero. 4. Write these values as integral roots. 5. why $I, 2$ and 3 are zeroes of $f(x)$ Guided practice and recapitulation: (IOmin) Exercise 2.2-4	$\begin{aligned} & p(x) \\ & =2 x-1 \end{aligned}$	$x=-\frac{1}{2}, \frac{1}{2}$	

Summative assessment plan- only where relevant

1. Find the zeroes of the polynomial $(x+2)^{2}-(x-2)^{2}$
2. If $x=2$ is a root of the polynomial a $x^{2}-3 x-10$, find the value of a
3. Find the zeroes of the polynomial $x^{3}+6 x^{2}+11 x+6$.

Teachers' reflections and experiences:

I.Did the lesson plan align with the curricular goals and competencies? If not How could be adjusted for better alignment?
2.How well did the pedagogical Strategies engage students and promote active participation in the learning process?
3.How well Did the assessment strategies measure student understanding and achievement of the learning outcomes?
4.How effective were the Materials and resources used in the lesson?
5.Did the lesson incorporate formative assessment Strategies to guide pedagogy and provide timely feedback to students?

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

Class: ${ }^{\text {th }}$	Subject: Mathematics	Chapter: Polynomials	
Total no. of periods for this chapter:14		ency-based questions value-based quest	
Learning Outcomes \& Indicators/microcompetencies	Teaching-Learning Process This should include activities to facilitate learning along with broad time duration	Pointers for formative assessment- this should include strategies that will be used to Check for Understanding - e.g., questions/worksheets/experiments/as signments/self-assessment checklists/etc.	Material required
Learning outcome: Identifies/ classifies polynomials among algebraic expressions and factories them by applying appropriate algebraic identities. Learning objective: Solve Higher order and competency based and	I.if degree of the polynomial $x^{3}+4 x^{\alpha-4}+8 x-7$ is 4 . Find the value of α. Here what is the degree off polynomial? Is there any term does have exponent as 4? So $\alpha-4$ must equal to which value? So, what is the value of α ? 2. Find the sum of coefficients of x^{3} and x^{2} of the polynomial $4 x^{7}+5 x^{3}-9 x^{2}+4$ 3. what is the degree of polynomial $\sqrt{2}$	Give examples of each of the following. Monomial Binomial Trinomial Linear polynomial Quadratic polynomial Cubic polynomial	

	Find the total cost when $x=5$.	Summative assessment plan- only where relevant
I.If $x=3$ and $x=0$ are the zeroes of the polynomial $2 x^{3}-8 x^{2}+a x+b$, then find the values of a and b.		
Teachers' reflections and experiences:		
I.Did the lesson plan align with the curricular goals and competencies? If not How could be adjusted for better alignment?		
2.How well did the pedagogical Strategies engage students and promote active participation in the learning process?		
3.How well Did the assessment strategies measure student understanding and achievement of the learning outcomes?		
4.How effective were the Materials and resources used in the lesson?		
5.Did the lesson incorporate formative assessment Strategies to guide pedagogy and provide timely feedback to students?		

PERIOD PLAN

Class: $9^{\text {th }}$
Subject: Mathematics
Total no. of periods for this chapter:14
Subtopic: Introduction to Remainder theorem and Factor theorem

Learning Outcomes \& Indicators/Micro Components	Teaching Learning Process This should include activities to facilitate learning along with broad time duration	Pointers for formative assessment- this should include strategies that will be used to Check for Understanding - e.g., questions/worksheets/experiments/assig nments/self-assessment checklists/etc.	TLM
CG3: Discovers and proves algebraic identities and models real life situations in the form of equations to solve them. C 3.I: States and motivates/proves remainder theorem, factor theorem, and division algorithm LEARNING OUTCOMES Identifies/classifies	Testing of Prerequisite knowledge (10 min) Whole class discussion: I) Observe the above long division and identify Divisor, Quotient, Remainder and Dividend. Write a mathematical relation between them. 2) What is the relation between Divisor, Dividend and Remainder?	- When do we call a divisor as a factor? - What will be the remainder when divisor is the factor of dividend? - Are all the divisors' factors of the dividend? - What is Euclid's Division Algorithm?	https://youtu.be/b 7IIcPOMIU?si=hw. M3RBhqrhlooqy This 7 min. video explains remainde theorem and factc theorem in simple way made by

	Generalisation of the concept: $\begin{aligned} & \mathrm{p}(\mathrm{~m})=\mathrm{t}(\mathrm{~m}) \times \mathrm{q}(\mathrm{~m})+\mathrm{r}(\mathrm{~m}) \\ & \text { Degree }\{\mathrm{r}(\mathrm{~m})\}<\text { Degree }\{\mathrm{t}(\mathrm{~m})\} \end{aligned}$ Teacher should reinforce the concept using several examples. $\text { E.g. }\left(7 x^{2}+14 x\right) \div(x+2)$	$\left(5 x^{3}-3 x+4\right) \div x$ Check the Division algorithm Practice Worksheet I. $\mathrm{P}(-2)$ is -2 . Is $\mathrm{x}+2$ is a factor of $\mathrm{x}^{2}+7 \mathrm{x}+$ 12? Explain. 2. $P(5)$ is 0 . Is $x-5$ is a factor of $2 x-10$? Explain.	Note: Images collected from NCERT text book and Google Images from Creative Common licence
Summative assessment plan- only where relevant Teacher makes the students into groups and ask them to present before class. Examine if $x-I$ is a factor of which of the following polynomial: I. $2 x^{3}-x^{2}+x-1$ 2. $x^{3}-x^{2}+x-1$ $x^{3}-x^{2}-(2+\sqrt{2}) x+\sqrt{ } 2$			
Teacher Reflection and Experience: I.Did the lesson plan align with the curricular goals and competencies? If not How could be adjusted for better alignment? 2.How well did the pedagogical Strategies engage students and promote active participation in the learning process? 3.How well Did the assessment strategies measure student understanding and achievement of the learning outcomes? 4. How effective were the Materials and resources used in the lesson? 5.Did the lesson incorporate formative assessment Strategies to guide pedagogy and provide timely feedback to student			

PERIOD PLAN (40min)Class: $9^{\text {th }} \quad$ Subject: Mathematics
Total no. of periods for this chapter:14

Chapter: polynomials
Period no :7/14

Sub Topic: Remainder Theorem (Proof \& Problems)

Learning Outcomes \& Indicators/Micro Components	Teaching Learning Process	Assessment	TLM
CG3: Discovers and proves algebraic identities and models real life situations in the form of equations to solve them. C 3.1: States and motivates/proves remainder theorem, factor theorem, and division algorithm LEARNING OUTCOMES Identifies/classifies polynomials among algebraic expressions in order to apply appropriate algebraic identities to factories them LEARNING OBJECTIVES Using the Remainder theorem to calculate remainder when $\mathbf{p}(\mathbf{x})$ is divided by a linear	Recall from previous Students individual work and share it with their friend next to them. (10 min .) I. what is the remainder when we divide $p(x)=3 x^{3}-x^{2}-x-4$ with $x-I$? 2. Check if the remainder when we divide $p(x)=3 x^{2}$ $x+I$ with $x+1$ is non -zero number. Teacher extends it to generalise the Remainder theorem and Factor theorem. (10 min .) Can you tell me the remainder when we divide $\mathrm{p}(\mathrm{x})$ with $\mathrm{x}-\mathrm{a}$? Teacher should generalise the fact in the form of the remainder		https://youtu.be/p I ISRAeEMR0?si= C5C970KaerBNW5f6 10 min . video made by JG on Remainder theorem and Synthetic division of Polynomials

theorem and Factor theorem	In whole class activity teacher should explain the theorem by discussion. Practice questions I. Find the remainder when $x^{4}+x^{3}-2 x^{2}+x+1$ is divided by $x-1$. Write the degrees of the dividend, divisor and remainder?	Discuss Dividend, Divisor Compare the degrees of the dividend, divisor and remainder Assignment: Check whether the polynomial $q(t)=4 t^{3}+4 t^{2}-t-I$ is a multiple of $2 \mathrm{t}+\mathrm{I}$	
Summative assessment plan- only where relevant S.A. Questions: I) Write the remainder when the polynomial $f(x)=x^{3}+x^{2}-3 x+2$ is divided by $x+1$. 2) Find the remainder when x^{15} is divided by $x+1$. 3) Find the remainder when $f(x)=4 x^{3}-3 x^{2}+2 x-1$ is divided by $2 x+1$			
Teachers' reflections and experiences: I.Did the lesson plan align with the curricular goals and competencies? If not How could be adjusted for better alignment? 2. How well did the pedagogical Strategies engage students and promote active participation in the learning process? 3.How well Did the assessment strategies measure student understanding and achievement of the learning outcomes? 4.How effective were the Materials and resources used in the lesson 5.Did the lesson incorporate formative assessment Strategies to guide pedagogy and provide timely feedback to students?			

PERIOD PLAN

Class: $9^{\text {th }}$
Subject: Mathematics
Chapter: Polynomials
Total no. of periods for this chapter:14 Period no :8/14
Sub topic: problems on Remainder theorem and Factor theorem

Learning Outcomes \& Indicators/Micro Components	Teaching Learning Process This should include activities to facilitate learning along with broad time duration	Pointers for formative assessment- this should include strategies that will be used to Check for Understanding - e.g., questions/worksheets/experi ments/assignments/selfassessment checklists/etc.	Material required
CG3: Discovers and proves algebraic identities and models real life situations in the form of equations to solve them. C-3.I: States and motivates/proves remainder theorem, factor theorem and division algorithm C-3.2: Models and solves contextualized problems using equations (e.g., simultaneous linear equations in two variables or single polynomial equations) and draws conclusions about a situation being modelled LEARNING OUTCOMES	Recapitulation (15 min) I. Check whether -2 and 2 are zeroes of the polynomial $\mathrm{x}+2$. 2. Check if $(y-2)$ and $(y+3)$ are factors of $y^{2}+5 y+6$. In pair share your response and justify. 3. Factorise $12 x^{2}-7 x+1$, $\begin{aligned} & 2 x^{2}+7 x+3, \quad 6 x^{2}+5 x-6 \\ & 3 x 2-x-4 \end{aligned}$ Activity I: (10 min) Teacher extends application of factor theorem to find unknown	How do we get the value of ' y ' to substitute in $\mathrm{p}(\mathrm{y})$? Rita says taking to check if $y-2$ is a factor of $p(y)$, we have to plug in y $=0$ and find $p(0)$. Do you agree with here? Why or why not? If $x-a$ is a factor of $p(x)$, then	

	$Y^{2}-5 y+6 \quad$ (5 min .)	iii) $6 x^{2}+5 \mathrm{x}-6 \mathrm{iv}$) $3 x^{2}-\mathrm{x}-4$	
Summative assessment plan			
Teacher Reflection and Experience:			
I.Did the lesson plan align with the curricular goals and competencies? If not How could be adjusted for better alignment?			
2.How well did the pedagogical Strategies engage students and promote active participation in the learning process?			
3.How well Did the assessment strategies measure student understanding and achievement of the learning outcomes?			
4.How effective were the Materials and resources used in the lesson?			
5.Did the lesson incorporate formative assessment Strategies to guide pedagogy and provide timely feedback to students?			

Total no. of periods for this chapter:14 Period no :9/14
Sub topic: Problems on Remainder theorem and Factor theorem

Learning Outcomes \& Indicators/Micro Components	Teaching Learning Process	Pointers for formative assessmentthis should include strategies that will be used to Check for Understanding e.g., questions/worksheets/experiments/a ssignments/self-assessment checklists/etc.	TLM
CG: Dscovers and proves agdraic idatities ad mods real life situtias in theformof equiars to sd ve them C-3.I: States and motivates/proves remainder theorem, factor theorem and division algorithm C-3.2: Models and solves contextualized problems using equations (e.g., simultaneous linear equations in two variables or single polynomial equations) and draws conclusions about a situation being modelled LEARNING OUTCOMES Identifies/classifies polynomials among algebraic expressions in	Recap:(5 min) The factor theorem tells: - if we are told that $p(y)=0$, then we can state that $(y-a)$ \qquad of $p(a)$ - if we are told that $(y-a)$ is a factor of $p(y)$, then we can state $p(a)=$ \qquad Teacher extends factorization of cubic polynomials using factor theorem. min.) I) https://youtu.be/R- 7kD8bAzjQ?si=LBMTAzmo LPollbxF 2) https://youtu.be/qRznHzKLY xE?si=WoU3hrEASKOHRI6	If $(m-2)$ is factor of $f(m)$, What is the value of $f(2)$? [Teacher could include few more such question]	

order to apply appropriate algebraic identities to factories them LEARNING OBJECTIVES Using the Remainder theorem, calculate division of $p(x)$ by a linear polynomial ' x - a ' and find the remainder is $p(a)$	P The above two videos (${ }^{\text {st }}$ one 6 min . and $2^{\text {nd }}$ one 3 min .) explains how to factorise cubic polynomial using factor theorem (made by Tic TacLearn English). Teacher can display the videos to build concept. Group Activity: Teacher make students into groups, ask them to solve a few questions and present before class. min.) Factorise $x^{3}-23 x^{2}+142 x-$ 120 $x^{3}+13 x^{2}+32 x+20$	On factorisation of cubic polynomials, what is the maximum number of factors it can have? Formative assessment: I. if $f(I)=0$ then what is the factor of $f(x)$. 2. if $f(-3)=0$ then what is the factor of $f(x)$. 3. if $x-3$ is a factor of $f(x)$ then what is the value of (3). 4. factorise $y^{2}-5 y+6$ 5. Factorise the following. i) $x^{3}-2 x^{2}-x+2$ ii) $2 y^{3}+y^{2}-2 y-1$

Summative assessment plan- only where relevant

summative: factorisei) $x^{3}-3 x^{2}-9 x-5$

$$
\text { ii) } x^{3}+13 x^{2}+32 x+20
$$

Teacher Reflection and Experience:

PERIOD PLAN

Class: $9^{\text {th }} \quad$ Subject: Mathematics Chapter: Polynomials Sub Topic: Remainder Theorem (Practice/Remedial Class)
Total no. of periods for this chapter:14
Period no :10/14

Learning Outcomes \& Indicators/Micro Components	Teaching Learning Process	Assessment	TLM
CG3: Discovers and proves algebraic identities and models real life situations in the form of equations to solve them. C-3.I: States and motivates/proves remainder theorem, factor theorem and division algorithm C-3.2: Models and solves contextualized problems using equations (e.g., simultaneous linear equations in two variables or single polynomial equations) and draws conclusions about a situation being modelled LEARNING OUTCOMES Identifies/classifies polynomials among algebraic expressions in order to apply appropriate algebraic identities to factories	Group Work/Individual Work (10 min) Exercise 2.3 I) Find the remainder when $x^{3}+3 x^{2}+3 x+1$ is divided by (i) $x+1$ (ii) $x-1 / 2$ (iii) x (iv) $x+\pi$ (v) $5+2 x$ 2)Find the remainder when x^{3} $\mathrm{ax}^{2}+6 \mathrm{x}-\mathrm{a}$ is divided by $\mathrm{x}-\mathrm{a}$ 3)Check whether $7+3 x$ is a factor of $3 x^{3}+7 x$ Additional Practice Questions for	Basic Find the remainder when $p(x)=4 x^{2}-$ $12 x^{2}+14 x-3$ is divided by $g(x)=x-1 / 2$ Lower Order Thinking Skills If the polynomials $a x^{3}+3 x^{2}-13$ and $2 x^{3}-5 x+a$, when divided by $(x-2)$ leave the same remainder, find the value of a. Higher Order Thinking If $f(x)=x^{4}-2 x^{3}+3 x^{2}-a x+b$ is a polynomial such that when it is divided by $x-I$ and $x+I$, the remainders are respectively 5 and	

them	higher order thinking (30 min) 4) What must be subtracted from $4 x^{4}-2 x^{3}-6 x^{2}+x-5$ so that the result is exactly divisible by $2 x^{2}+x-1$?	19. Determine the remainder when $f(x)$ is divided by ($x-2$).	
LEARNING OBJECTIVES			
Using the Remainder theorem, calculate division of $p(x)$ by a linear polynomial ' $x-a$ ' and find the remainder is $p(a)$ and verify using long division.	5)If $\left(a x^{3}+b x^{2}+x-6\right)$ has $(x+2)$ as a factor and leaves remainder 4, when divided by ($x-2$), find the values of a and b.		
Division of polynomial with linear polynomial	6)If $\left(x^{2}-1\right)$ is a factor of $a x^{3}+b x^{2}+c x+d$, show that $a r c=0$		
Solving problems using Factor theorem and Remainder theorem			
Summative assessment plan- only where relevant			
I. Find m, if $(x+2)$ is the factor of $x^{3}+3 x^{2}-2 m x+8$			
2. Using the factor theorem, show that $(x+1)$ is a factor of $x^{19}+1$.			
Teacher Reflection and Experience:			
I.Did the lesson plan align with the curricular goals and competencies? If not How could be adjusted for better alignment?			
2.How well did the pedagogical Strategies engage students and promote active participation in the learning process?			
3.How well Did the assessment strategies measure student understanding and achievement of the learning outcomes?			
4.How effective were the Materials and resources used in the lesson?			
5.Did the lesson incorporate formative assessment Strategies to guide pedagogy and provide timely feedback to student.			

Period Plan ${ }^{\text {Class: } 9^{\text {th }}}$
Total no. of periods for this chapter:14 Period no :11/14
Sub topic: FINDING THE VALUE OF "K" TYPE QUESTIONS

Learning Outcomes \& Indicators/microcompetencies	Teaching-Learning Process This should include activities to facilitate learning along with broad time duration	Pointers for formative assessment- this should include strategies that will be used to Check for Understanding - e.g. questions/worksheets/experiments/as signments/self-assessment checklists/etc.	Material Required
CG3: Discovers and proves algebraic identities and models real life situations in the form of equations to solve them.	Whole class discussion: (15 min) Whole class activity: State the steps of Factorizing $x^{2}-2 x+1$ using factor theorem. Matching the polynomial to its factor	QUIZ Find k if $x+l$ is a factor of $x^{2}-k$.	
C-3.I: States and motivates/proves remainder theorem, factor theorem and division algorithm. C-3.2: Models and solves contextualised problems using equations (e.g., simultaneous linear equations in two variables or single polynomial equations) and draws conclusions about a situation being modelled LEARNING OUTCOME: Identifies/classifies polynomials among	Polynomial factor I. $x^{2}-2 x+1 \quad$ () a. $x-2$ 2. $x^{2}+2 x+1$ () b. $x+1$ 3. $x^{2}-4 x+4$ () c. $x-1$ 4. Is $x=3$ a root of $x^{2}-4 x+4$? Justify 5. What is the value of k if $x-1$ is a factor of $2 x^{3}+k x^{2}+8 x-5$? Students work in pairs to do the following: Use the suitable identities to expand the following: I. $(2 m+3)^{2}$ 2. $(2 m-n)^{2}$ 3. 105^{2} 4. 97^{2} 5. $(m+2 n)(m-2 n)$ 6. 102×98 7. $(2 m+3 n)(m-5 n)$	GRAPH BOOK Expand the identities: $\begin{aligned} & (x+y)^{2}= \\ & (x-y)^{2}= \\ & (x+y)(x-y)= \\ & (x+a)(x+b)= \end{aligned}$ \qquad [Teacher notes: After students have shared the expanded form. Encourage students to make note of the identities to refer to while solving problems] How would you split 105 to apply the identities to calculate? How would you rearrange $102 \times$	

Algebraic Expressions and factories them by applying appropriate algebraic identities	8. $\left(y^{2}+3 / 2\right)\left(y^{2}-3 / 2\right)$
LEARNING OBJECTIVES:	Application of identities to factorise polynomials The teacher, through guided conversion shows factorization of polynomials using identities.
Maps a polynomial to known identity/identities.	Factorise $4 m^{2}-12 m n+9 n^{2}$. Here, $4 m^{2}-12 m n+9 n^{2}$ is seen as $(2 m)^{2}-2(2 m)(3 n)+(3 n)^{2}$
Selects appropriate identity to simplify a calculation.	Taking $x=2 m$ and $y=3 n$, we can compare it with expression x^{2} $-2 x y+y^{2}$. And $x^{2}-2 x y+y^{2}=(x-y)^{2}$.
Applies algebraic identities to factorise polynomials	So, $4 m^{2}-12 m n+9 n^{2}=(2 m-3 n)^{2}=(2 m-3 n)(2 m-3 n)$ Students individually work on Exercise 2.4 - Q. 3 and share their working with their friend next to them. The graph of quadratic polynomial $x^{2}-2 x-k$ find k from the graph?

98 to apply the identities to calculate?

How many terms are there in the given expression?
Identify how many square terms are there in them.
The expression also has a negative term. On comparing, which of the identity can it be mapped to?

FORMATIVE ASSESSMENT

I.Find the value of k if $x-1$ is a
factor of $P(X)=K X^{2}-2 X+1$?
2. Find the value of k if $x-I$ is a factor $P(X)=K X^{2}-3 X+K$?

Summative assessment plan- only where relevant

The area of a square is given by $9 y^{2}+30 y+25$. Find the lengths of its side

Teacher Reflection and Experience:

I.Did the lesson plan align with the curricular goals and competencies? If not How could be adjusted for better alignment?
2.How well did the pedagogical Strategies engage students and promote active participation in the learning process?
3.How well Did the assessment strategies measure student understanding and achievement of the learning outcomes?
4.How effective were the Materials and resources used in the lesson?
5. Did the lesson incorporate formative assessment Strategies to guide pedagogy and provide timely feedback to student

Chapter Plan (Unit Plan/Lesson Plan)Period plan (40 mins class)

Class: $\mathbf{9}^{\text {th }}$
 Subject: Mathematics

Chapter: Polynomials
Total no. of periods for this chapter: 14Period no :12/14
Subtopic: Expanding and factorizing using Algebraic Identities

learning Outcomes \& Indicators/microcompetencies	Teaching-Learning Process This should include activities to facilitate learning along with broad time duration	Pointers for formative assessment- this should include strategies that will be used to Check for Understanding-e.g, questions/worksheets/experi ment s/assignments/selfassessment checklists/etc.	Material required
CG3: Discovers and proves algebraic identities and models real life situations in the form of equations to solve them. C-3.I: States and motivates/proves remainder theorem, factor theorem and division algorithm C-3.2: Models and solves contextualized	Testing of prerequisite knowledge: In pairs do the following: ($5 \mathbf{~ m i n}$) 1. Find the product of algebraic expressions $(3 x+5) \times 4 x$ 2. Find the product of two binomials ($5 x-7$) $(6 x+8)$ Now, in small groups of 4, students to expand the following identities: $(x+y+z)^{2}$ Let us consider $\mathbf{y + z}=\mathbf{t}$, then $(x+y+z)^{2}$ becomes (x	What is the degree of the products obtained on multiplication? 1. In, $x+y+z$ how many terms are there? What is the expansion of $(x+t)^{2}$	

	Step 2- Draw lines of length x, y and z horizontally and vertically. Find the area of each slice/tile and add them to show the whole area. Using the identity $(x+y+z)^{2}=x^{2}+y^{2}$ $+z^{2}+2 x y+2 y z+2 x z$ find: I. $(-2 x+3 y+2 z)^{2}$ 2. $(m+2 n+5 m)^{2}$ 3. $(3 p-q+2 r)^{2}$ 4. $(-2 x+5 y-3 z)^{2}$ [Teacher note: Teacher to illustrate one example and following which children work in pairs.] The teacher introduces identity (x $+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y+2 y z+$ $2 x z$ could be used to factorise as well.	in this expression? b. State the identity you would use to find the product. Assignment- Exercise 2.4-4 and 5	TacLearn video on algebraic identities can be used to revise all formulas

Teachers' reflections and experiences:

I.Did the lesson plan align with the curricular goals and competencies? If not How could be adjusted for better alignment?
2.How well did the pedagogical Strategies engage students and promote active participation in the learning process?
3.How well Did the assessment strategies measure student understanding and achievement of the learning outcomes?
4. How effective were the Materials and resources used in the lesson?
5.Did the lesson incorporate formative assessment Strategies to guide pedagogy and provide timely feedback to students?

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

solve them.

C-3.I: States and motivates/proves remainder theorem, factor theorem and division algorithm C-3.2: Models and solves contextualised problems using equations (e.g., simultaneous linear equations in two variables or single polynomial equations) and draws conclusions about a situation being modelled

Derives proofs for algebraic identities.

Maps a polynomial to known identity/identities.

Factorises a polynomial using the appropriate identity.
a.

If area of a square field is given by $y^{2}+2 y+1$. What is length of each side?

Students work in pairs:
Write a polynomial that represents the volume of the following:
a.

I. State the identity used to find the product.
2. What is the degree of the product?
3. How many terms are there in the product?
https:/lyout
u.be/MRZB

2dvQzeY?si
=NttabQN PLRoWaK

KA

Summative assessment plan- only where relevant

I. Rohit has a net of a dice. He wants to make a bigger dice by increasing all its dimensions by l cm . What would be the volume of the bigger dice?

This Photo by Unknown Author is licensed under CC BY-SA-NC

2Use suitable identity find the product of $(x+8)(x-10)$
3. Evaluate
4.103×107 without multiplying directly.
5.Use suitable identity find the product of $(6 y+5)(6 y+8)$

6 .Evaluate 504×503 without multiplying directly.

Teachers' reflections and experiences:

I.Did the lesson plan align with the curricular goals and competencies? If not How could be adjusted for better alignment?
2.How well did the pedagogical Strategies engage students and promote active participation in the learning process?
3.How well Did the assessment strategies measure student understanding and achievement of the learning outcomes?
4.How effective were the Materials and resources used in the lesson?
5.Did the lesson incorporate formative assessment Strategies to guide pedagogy and provide timely feedback to students?

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

		Chapter: Polynomials	
Total no. of periods for this chapter:20 Period no :14/14 Subtopic: Algebraic identities: $\left(x^{3}+y^{3}\right)$ and $\left(x^{3}-y^{3}\right)$			
Learning Outcomes \& Indicators/microcompetencies	Teaching-Learning Process This should include activities to facilitate learning along with broad time duration	Pointers for formative assessment- this should include strategies that will be used to Check for Understanding - e.g., questions/worksheets/experimen ts/assignments/self-assessment checklists/etc.	Material required
Learning outcome: Identifies/ classifies polynomials among algebraic expressions and factories them by applying appropriate algebraic identities. CG3: Discovers and proves algebraic identities and models real life situations in the form of equations to solve them.	Testing of previous knowledge I. A square plot of side x feet is increased by 10 feet on each side. a. Represent its area algebraically. b. Which identity would you use to find its area? Write two binomials whose product is $\mathrm{m}^{2}-6 \mathrm{~m}+9$. The figure shows a square of side y unit cut off from a square of side x unit. (15 min)		

C-3.1: States and motivates/proves remainder theorem, factor theorem and division algorithm C-3.2: Models and solves contextualized problems using equations (e.g., simultaneous linear equations in two variables or single polynomial equations) and draws conclusions about a situation being modelled

Apply the concept of factorization to solve daily life situations

c. Write the algebraic expression of the remaining 3 parts.
d. What is the common factor of the three terms?
e. Express in factor form.

Teacher demonstrates geometric proof of $x^{3}+y^{3:}$
(15 min)
I. Here are 2 cubes with sides x and y units that are joined side to side.
a. What is the volume of each cube?
b. Write combination of the cubes in algebraic form. (Which is $x^{3}+y^{3}$)

2. Now to express this in product form, we will complete the figure to form a single solid.

What is solid formed now? How many cuboids were added to form a bigger cuboid?	$\begin{gathered} \frac{\mathrm{a} 3+\mathrm{b} 3-}{\text { long.pptx- }-} \\ \text { Google Drive } \end{gathered}$
	[Teacher could refer to this link.]
What are the common factor in $[x y(x-$ y) $\left.+y^{2}(x-y)\right]$?	
8 and 125 are cube of which numbers? Students individually work Exercise 2.4 -	https://www .youtube.co m/watch? $v=$ 9RHJtOGXL

Derive the proofs of identities of algebraic expressions. Factorizes a polynomial using the appropriate identity	3. Write the volume of cuboids added. 4. To know what is $x^{3}+y^{3}$, we should take away volume of filled in shapes from the bigger cuboid. $\begin{aligned} & X^{3}+y^{3}=(x+y) x^{2}-\left[x y(x-y)+y^{2}(x-y)\right] \\ & =(x+y) x^{2}-y(x-y)[x+y] \end{aligned}$ Now taking $(x+y)$ common we have, $x^{3}+y^{3}=(x+y)\left[x^{2}-y(x-y)\right]=(x+y)\left(x^{2}-x y+y^{2}\right)$ Students in pairs verify $x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$ Teacher extends it to factorisation of $8 \mathrm{~m}^{3}+125$. $\begin{aligned} & 8 m^{3}+125=(2 m)^{3}+(5)^{3} \\ & =(2 m+5)\left(4 m^{2}-10 m+25\right) \end{aligned}$ Students in pairs verify $\mathrm{x}^{3}-\mathrm{y}^{3}=(\mathrm{x}-\mathrm{y})\left(\mathrm{x}^{2}+\mathrm{xy}+\mathrm{y}^{2}\right)$ Teacher plays given video to visualise $(x-y)^{3}$ geometrically.	10	cY [Teacher can use the 6 min . video to explain (x- y) ${ }^{3}$ geometri cally made by Mathsmart

Summative assessment plan- only where relevant

1. Simplify $27 x^{3}-(3 x-y)^{3}$
2. Factorise $24 \sqrt{3} x^{3}-125 y^{3}$

Teachers' reflections and experiences:

POLYNOMIALS

WORK SHEET -1

Multiple choice Questions:

Write the correct answer in each of the following:
I. The value of the polynomial $5 x-4 \times 2+3$, when $x=-1$ is
(A) -6
(B) 6
(C) 2
(D) -2
2. $\sqrt{ } 2$ is a polynomial of degree
(A) 2 (B) 0 (C) 1 (D) । 2
3. Degree of the polynomial $4 \times 4+0 \times 3+0 \times 5+5 x+7$ is
(A) 4 (B) 5 (C) 3 (D) 7
4. Degree of the zero polynomial is
(A) 0 (B) I (C) Any natural number (D) Not defined
5. If $p(x)=x^{2}-2 \sqrt{2}+I$, then $p(2 \sqrt{ } 2)$ is equal to
(A) 0 (B) 1 (C) $4 \sqrt{2}$ (D) $8 \sqrt{2}+1$

Answer the following questions:

I. $f(x)=x^{3}-6 x^{2}+11 x-6$
2. Find $f(1), f(-1), f(2), f(-2), f(3), f(-3), f(6)$ and $f(-6)$
3. Observe which of the above are equal to zero.

POLYNOMIALS

WORK SHEET -2

Answer the following questions:

I. Which one is not a polynomial
(a) $4 x^{2}+2 x-1$
(b) $y+\frac{3}{y}$
(c) $x^{3}-1$
(d) $y^{2}+5 y+1$
2. The polynomial $p x^{2}+q x+r x^{4}+5$ is of tyep
(a) linear
(b) quadratic
(c) cubic
(d) Biquadratic
3. Identify the polynomial
(a) $x^{-2}+x^{-1}+5$
(b) $x^{2}+5 \sqrt{x}+7$
(c) $\frac{1}{x^{3}}+7$
(d) $3 x^{2}+7$
4. The zero of the polynomial $p(x)=2 x+5$ is
(a) 2(b) 5(c) $\frac{2}{5}(d) \quad-\frac{5}{2}$
5. The number of zeros of $x^{2}+4 x+2$
(a) 1(b) 2(c) 3(d) none of thesel

Answer the following questions:

I. Write these values as integral roots.
2. why $\mathrm{I}, 2$ and 3 are zeroes of $\mathrm{f}(\mathrm{x})$.
3. Factorize $x^{3}-6 x^{2}+11 x-6$

POLYNOMIALS

WORK SHEET -3

Answer the following questions:

1. If $a+b+c=9$, $a n d a b+b c+c a=26$ Find $a^{2}+b^{2}+c^{2}$?
2. Find the values of a, b so that the polynomial $x^{4}+a x^{3}-7 x 2+8 x+b$ is exactly divisible by $(x+2)$ as well as $(x+3)$
3. Find the value of p, if $(2 x-1)$ is a factor of $2 x^{3}+p x^{2}+11 x+p+3$
1) Amit and Rahul are friends who love collecting stamps. They decide to start a stamp collection club and contribute funds to purchase new stamps. They both invest a certain amount of money in the club. Let's represent Amit's investment by the polynomial $\mathrm{A}(\mathrm{x})=3 \mathrm{x}^{2}+$ $2 x+1$ and Rahul's investment by the polynomial $R(x)=2 x^{2}-5 x+3$. The sum of their investments is represented by the polynomial $S(x)$, which is the sum of $A(x)$ and $R(x)$.

Q1. What is the coefficient of x^{2} in Amit's investment polynomial $A(x)$?
(a) 3(b) 2(c) 1(d) 0

Q2. What is the constant term in Rahul's investment polynomial $\mathbf{R}(\mathbf{x})$?
(a) 2(b) -5(c) 3(d) 0

Q3. What is the degree of the polynomial $S(x)$, representing the sum of their investments?
(a) 4(b) 3(c) 2(d) 1

Q4. What is the coefficient of x in the polynomial $S(x)$?
(a) 7 (b) -3 (c) 0 (d) 5

Q5. What is the sum of their investments, represented by the polynomial $S(x)$?
(a) $5 \mathrm{x}^{2}+7 \mathrm{x}+4$ (b) $5 \mathrm{x}^{2}-3 \mathrm{x}+4$ (c) $5 \mathrm{x}^{2}-3 \mathrm{x}+5$ (d) $5 \mathrm{x}^{2}+7 \mathrm{x}+5$

INTRODUCTION

3.COORDINATE GEOMETRY

[Goto https://epathshala.nic.in]
https://epathshala.nic.in/topics.php?In=en

THE FOLLOWING CURRICULAR GOALS (CG) AND COMPETENCIES (C) WILL BE DEVELOPED THROUGH THIS CHAPTER

CURRICULAR GOALS	COMPETENCIES
CG-4: Analysis characteristics and properties of two- dimensional geometric shapes and develops mathematical arguments to explain geometric relationships.	C-4.5: Specifies locations and describes spatial relationships using coordinate geometry, e.g., plotting a pair of linear equations and graphically finding the solution, or finding the area of triangle with given coordinates as vertices. CG-10: Knows and appreciates important contributions of mathematicians from India and around the world.
C-10.1: Recognizes the important contributions made by mathematicians (Indian and others) in the field of Mathematics (such as evolution of members, geometry, algebra)	

MIND MAP

CHAPTER-3
 COORDINATE GEOMETRY MIND MAP

PERIOD WISE PLAN

PERIOD NO.	TEACHING TOPIC	LEARNING OUTCOMES
$\mathbf{1}$	Activities to introduce coordinate geometry	Identify the position of object
$\mathbf{2}$	Cartesian System	
axes about history of Rene Descartes and know about coordinate		
$\mathbf{3}$	abscissa, ordinate, identifying the points on a plane.	Find abscissa ordinate of a point
$\mathbf{4}$	Relationship between the signs of the coordinates of a point and the quadrant of a point in which it lies.	Locating points in different quadrants
$\mathbf{5}$	Plotting the points on Cartesian Plane	Polotting the given points

Key concepts: Introduction to coordinate geometry, Cartesian plane, plotting the points on a plane

Chapter Plan(Unit plan/ lesson plan)Period plan (40 mins class)

Class: $9^{\text {th }} \quad$ Subject: Mathematics Total no. of periods for this chapter: 5 Period no $1 / 5$ Sub topic: Activities to introduce coordinate geometry		Chapter: COORDINATE GEOMETRY	
Learning Outcomes \& Indicators/microcompetencies	Teaching-Learning Process This should include activities to facilitate learning along with broad time duration	Pointers for formative assessment- this should include strategies that will be used to Check for Understanding - e.g., questions/worksheets/experiment s/assignments/self-assessment checklists/etc.	Materi requir
CG-4: Analysis characteristics and properties of twodimensional geometric shapes and develops mathematical arguments to explain geometric relationships CG-10: Knows and appreciates important contributions of mathematicians from India and around the world	Testing of Pre requisite knowledge :20min Activity:1 (Seating Plan): Draw a plan of the seating in your classroom, pushing all the desks together. Represent each desk by a square. In each square, write the name of the student occupying the desk, which the square represents. Position of each student in the classroom is described precisely by using two independent information. (i) The column in which she or he sits. (ii) The row in which she or he sits. If you are sitting on the desk lying in the $5^{\text {th }}$ column and $3^{\text {rd }}$ row	Check your position as per seating plan.	Grapl sheet:

C-10.1: Recognizes the important contributions made by mathematicians (Indian and others) in the field of Mathematics (such as evolution of members, geometry, algebra) Identify the position of object	How can we represent your position? [Note: your position could be written as $(5,3)$, first writing the column number, and then the row number] Write down the names and positions of other students in your class. For example, if Nani is sitting in the 4th column and 1st row, write his position. 1. Sudha is sitting in $4^{\text {th }}$ column $; 3^{\text {rd }}$ row. Then write her position. 2. Name the position of Mr. R who was in the circle. 3. write the position of the girl in the rectangle box?	Write the position of H ? Write the positions of your friends?	
	Activity.2:: 20min A teacher asked her students to mark a point on a sheet of paper. The hint given by the teacher is "the point should be at a distance of 6 cm from the left edge." Some of the students marked the point as		

Summative assessment plan- only where relevant

Teachers' reflections and experiences:

1.Did the lesson plan align with the curricular goals and competencies? If not How could be adjusted for better alignment?
2. How well did the pedagogical Strategies engage students and promote active participation in the learning process?
3.How well Did the assessment strategies measure student understanding and achievement of the learning outcomes?
4.How effective were the Materials and resources used in the lesson?
5.Did the lesson incorporate formative assessment Strategies to guide pedagogy and provide timely feedback to students?

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

Class: 9 $^{\text {th }}$ Total no. of period Sub topics: Abscis	Subject: Mathematics his chapter: 5 Period no :2/5 rdinate, Identifying the points on a plane.	Chapter: COORDINATE GEOMETRY	
Learning Outcomes \& Indicators/microcompetencies	Teaching-Learning Process This should include activities to facilitate learning along with broad time duration	Pointers for formative assessment- this should include strategies that will be used to Check for Understanding - e.g., questions/worksheets/experiment s/assignments/self-assessment checklists/etc.	Materi requirı
.	Whole class discussion: 15 minutes1. How much information we need to locate any object in a plane? 2. Do you know Parallel and intersecting lines? 3. Which type of lines has a common point? 4. Do you know about perpendicular lines? 5.Are the all-intersecting lines perpendicular? [Teacher Note: Teacher should explain the contribution of Rene Descartes that he combined plane geometry with algebra for developing coordinate geometry] History of Rene Descartes 10 minutes Draw a Real number Numbe line?	1. In a locality, there is a main road along North-South direction. The map is given below. With the help of the picture answer the following questions. i)What is the 3rd object on the left side in street no. 3 while going in east direction?	

Whole Activity:25 minutes
Teacher makes the students into pairs and ask them to follow the instructions.

1. Take two Real Numbers and put together arrange perpendicularly and they will meet at O. Arrange like following manner. [Teacher introduces coordinate axes\}

$$
X^{1} \longleftrightarrow 4
$$

$$
Y^{1}
$$

1. How do you call horizontal number line?
2. How do you call Vertical Number line?

What do you call the intersecting point of X and Y
(ii) Find the name of the 2nd house which is in right side of street 2 while going in east direction.
(iii) Locate the position of Mr. K's house.
(iv) How do you describe the position of the post office?
(v) How do you describe the location of the hospital?

Mode

preparat
of
coordin:
axis ol
Thermo sheet

	axis? What X -axis and Y -axis together called? Teacher introduces about Quadrants in Cartesian Plane By observing the figure identify number of parts that coordinate axis divided?	How d	Y-axis X-axis negative Y -axis Positive X -axis negative X -axis Positive Y-axis dinate axes useful?	

Summative assessment plan- only where relevant

1. What are some examples of coordinate geometry in our real life?

Teachers' reflections and experiences:

1.Did the lesson plan align with the curricular goals and competencies? If not How could be adjusted for better alignment?
2.How well did the pedagogical Strategies engage students and promote active participation in the learning process?
3. How well Did the assessment strategies measure student understanding and achievement of the learning outcomes?
4.How effective were the Materials and resources used in the lesson?
5.Did the lesson incorporate formative assessment Strategies to guide pedagogy and provide timely feedback to students?

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

Class: $9^{\text {th }}$ Total no. of periods f Sub topic: Abscissa,	Subject: Mathematics this chapter: $5 \quad$ Period no :3/5 dinate,Identifying the points on a plane.	Chapter: COORDINATE GEOMETRY	
Learning Outcomes \& Indicators/microcompetencies	Teaching-Learning Process This should include activities to facilitate learning along with broad time duration	Pointers for formative assessment- this should include strategies that will be used to Check for Understanding - e.g., questions/worksheets/experiment s/assignments/self-assessment checklists/etc.	Materi requir
. Define Abscissa and ordinate . Describe the points on a plane. Understands coordinates as distances. Learning Outcomes: Student able to locate lidentify a point in cartesian plane	Testing of Pre requisite knowledge 5 min What are called horizontal line and vertical line in a plane? What are called the negative directions of X -axis and Y-axis? Do you know how to identify the points in a plane? Teacher orientation: 20 min	1.How will you describe the position of a table lamp on your study table to another person? 2. what is the general form of the points which lie on the X -axis? 3. How many coordinates does any point in a plane have? 4.What is called the second coordinate of the point?	

	What are the coordinates of B? In the point $(5,3)$ How do we call 5 ? In the point $(5,3)$ How do we call 3 ? ACTIVITY :: 15 MINUTES 1.Find the coordinates of points A, B, C and D ? 2. write abscissa and ordinate of each point? 3. identify the points A, B, C, D in which quadrant they belong to? 1.Write the coordinates of the points marked on the axes in the figure.	Write the coordinates of A ? (ii) The coordinates of B are $(0,3)$. Why? (iii) The coordinates of C are $(-5,0)$ Why? (iv) The coordinates of D are $(0,-4)$. Why?

Teachers' reflections and experiences:

1.Did the lesson plan align with the curricular goals and competencies? If not How could be adjusted for better alignment?
2.How well did the pedagogical Strategies engage students and promote active participation in the learning process?
3.How well Did the assessment strategies measure student understanding and achievement of the learning outcomes?
4. How effective were the Materials and resources used in the lesson?
5.Did the lesson incorporate formative assessment Strategies to guide pedagogy and provide timely feedback to students?

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

Class: $9^{\text {th }}$ Total no. of periods f Sub topic: Relations	his chapter: 5 Period no :4/5 between the signs of the coordinates of	Chapter: COORDINATE GEOMETRY	
Learning Outcomes \& Indicators/microcompetencies	Teaching-Learning Process This should include activities to facilitate learning along with broad time duration	Pointers for formative assessment- this should include strategies that will be used to Check for Understanding - e.g., questions/worksheets/experiment s/assignments/self-assessment checklists/etc.	Materi requirı
. Define Abscissa and ordinate . Describe the points on a plane. Understands coordinates as distances. Learning Outcomes: Student able to locate lidentify a point in cartesian plane	Testing of Pre requisite knowledge 5 min What are cordinates of origin? Complete the table Identify the vertices of a parallelogram ABCD Relationship between the signs of the coordinates of a point and the quadrant of a point in which it lies.		

	Write the coordinates of the points marked in the graph. Write What do you notice? Are these points lie on the same line? Write the coordinates of the points marked in graph What do you notice? Are these points lie on the same line?	What is the general form of a point lie on X-axis? What is the equation of X -axis? Do this Among the points given below some of the points lie on X-axis. Identify them. $\begin{aligned} & \text { (i) (0,5) (ii) (0,0) (iii) (3,0) (iv) (-5,0) (v) } \\ & (-2,-3)(\text { vi) }(-6,0)(\text { vii) }(0,6)(\text { viii })(0, a)(\text { (ix }) \\ & (b, 0) \end{aligned}$ What is the general form of a point lie on Y -axis? What is the equation of Y-axis?	$\begin{array}{r} \text { SOURCE } \\ \text { https://wwv } \\ \text { tube.com/@ } \\ \begin{array}{r} \text { SClass91 } \\ \text { concept a } \\ \text { MCQs Prac } \end{array} \end{array}$

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

Class: $9^{\text {th }}$ Subject: Mathematics Total no. of periods for this chapter: 5 Period no :5/5 Sub topic: Plotting the points on Cartesian Plane		Chapter: COORDINATE GEOMETRY	
Learning Outcomes \& Indicators/microcompetencies	Teaching-Learning Process This should include activities to facilitate learning along with broad time duration	Pointers for formative assessment- this should include strategies that will be used to Check for Understanding - e.g., questions/worksheets/experiment s/assignments/self-assessment checklists/etc.	Materi requirı
. Define Abscissa and ordinate . Describe the points on a plane. Understands coordinates as distances.	Whole class Activity: 20 minutes Teacher explains how to plot the given point on the cartesian plane. 1.plot a point $(4,6)$. 2. Can you say in which quadrant the point P lies? Teacher instructed to the learners to follow the process. Draw two number lines perpendicular to each other meeting at their zeroes on a graph paper. Name the horizontal line as X -axis and the vertical line as Y -axis and locate the meeting point of both the lines as Origin ' O '. - Keep the x-coordinate in mind, start from zero, to from the Origin. - Move 4 units along positive part of X -axis i.e., to its right side and mark the point A. - From A move 6 units upward along a line parallel to positive part of Y -axis - Locate the position of the point ' P ' as $(4,6)$. The above process of marking a point on a Cartesian plane using their co-ordinates is called "plotting the point"	1.Plot the following points in the Cartesian plane (i) $\mathrm{M}(-2,4)$, (ii) $\mathrm{A}(-5,-3)$, (iii) $\mathrm{N}(1$, -6)	GeoGeb Graph Maker A3 Grapl sheet https:// w.youtu com/liv hd5sH3f ?si=XXL AE4U2c e8

Now you will get a surprise figure. What is it?

Teachers' reflections and experiences:

Work sheet

COORDINATE GEOMETRY

Write the correct answer in each of the following:

1. Point $(-3,5)$ lies in the
(A) first quadrant (B) second quadrant (C) third quadrant (D) fourth quadrant
2. Signs of the abscissa and ordinate of a point in the second quadrant are respectively
(A),$++(\mathrm{B})-,-(\mathrm{C})-,+(\mathrm{D})+,-$
3. Point $(0,-7)$ lies
(A) on the x-axis (B) in the second quadrant (C) on the y-axis (D) in the fourth quadrant
4. Point $(-10,0)$ lies
(A) on the negative direction of the x-axis (B) on the negative direction of the y-axis (C) in the third quadrant (D) in the fourth quadrant
5. Abscissa of all the points on the x-axis is
(A) 0 (B) 1 (C) 2 (D) any number
6. Ordinate of all points on the x-axis is
(A) 0 (B) 1 (C) - 1 (D) any number COORDINATE GEOMETRY 25
7. The point at which the two coordinate axes meet is called the
(A) abscissa (B) ordinate (C) origin (D) quadrant
8. A point both of whose coordinates are negative will lie in
(A) I quadrant (B) II quadrant (C) III quadrant (D) IV quadrant
9. Points $(1,-1),(2,-2),(4,-5),(-3,-4)$
(A) lie in II quadrant (B) lie in III quadrant (C) lie in IV quadrant (D) do not lie in the same quadrant
10. If y coordinate of a point is zero, then this point always lies
(A) in I quadrant (B) in II quadrant (C) on x - axis (D) on y - axis
11. The points $(-5,2)$ and $(2,-5)$ lie in the
(A) same quadrant (B) II and III quadrants, respectively (C) II and IV quadrants, respectively (D) IV and II quadrants, respectively
12. If the perpendicular distance of a point P from the x-axis is 5 units and the foot of the perpendicular lies on the negative direction of x-axis, then the point P has
$(A) x$ coordinate $=-5(B)$ y coordinate $=5$ only (C) y coordinate $=-5$ only (D) y coordinate $=5$ or -5
13. On plotting the points $O(0,0), A(3,0), B(3,4), C(0,4)$ and joining $O A, A B, B C$ and $C O$ which of the following figure is obtained?

Work Sheet-2

Coordinate Geometry

(Case Based Questions)
A satellite image of a colony is shown below. In this view, a particular house is pointed out by a flag, which is situated at the point intersection of the x and y-axes. If we go 2 cm east and 3 cm north from the house, then we reach a Grocery store. If we go 4 cm west and 6 cm south from the house, then we reach an Electrician's shop. If we go 6 cm east and 8 cm south from the house, then we reach a food cart. If we go 6 cm west and 8 cm north from the house, then we reach a bus stand.

Based on the above information, answer the following questions.
(i) The distance between the grocery store and food cart is
(a) 12 cm
(b) 15 cm
(c) 18 cm
(d) none of these
ii) The distance of the bus stand from the house is
(a) 5 cm
(b) 10 cm
(c) 12 cm
(d) 15 cm
iii) If the grocery store and electrician's shop lie on a line, the ratio of the distance of house from grocery store to that from electrician's shop, is
(a) 3.2
(b) 2.3 (c)
(c) 1.2
(d) 2.1
(iv) The ratio of distances of the house from the bus stand to the food cart is

(a) 1.2	(b) 2.1	(c) 1.1	(d) none of these

(v) The coordinates of positions of bus stand, grocery store, food cart, and electrician's shop form a
(a) rectangle
(b) parallelogram
(c) square
(d) none of these
2) Saumya has to reach her office every day at 10:00 am. On the way to her office, she drops her son at school. Now, the location of Saumya's house, her son's school and her office are represented by the map below. Using the details given, answer the following questions.

Q1. Find the coordinates of Saumya's home.
(a) $(1,4)$
(b) $(4,1)$
(c) $(7,1)$
(d) $(1,7)$

Q2. Find the coordinates of Saumya's office.
(a) $(7,5)$
(b) $(5,7)$
(c) $(7,1)$
(d) $(1,7)$

Q3. Find the coordinates of Saumya's son's school.
(a) $(1,4)$
(b) $(4,1)$
(c) $(7,1)$
(d) $(1,7)$

Q4. Find the distance between Saumya's home and her son's school.
(a) 7 km
(b) 4 km
(c) 3 km
(d) 1 km

Q5. Find the distance between Saumya's office and her son's school.
(a) 7 km
(b) 4 km
(c) 3 km
(d) 1 km

WORKSHEET 3

Practice the questions given in the worksheet on coordinate point. The questions are based on coordinate graph and how to locate the position of a point in a plane.

1. In which quadrant do the following points lie?
(i) $\mathrm{A}(3,5)$
(ii) $\mathrm{B}(-2,1)$
(iii) $\mathrm{M}(-1,-7)$
(iv) $\mathrm{N}(4,-5)$
(v) $P(-1,1)$
(vi) $\mathrm{Q}(-5,3)$
(vii) $R(7,-3)$
(viii) $\mathrm{S}(4,7)$
2. State which of the points lie on x -axis. Give a common reason.
(i) $(0,2)$
(ii) $(4,0)$
(iii) $(0,0)$
(iv) $(0,-3)$
(v) $(-5,0)$
(vi) $(-1,5)$
(vii) $(3,-1)$
(vii) $(2,0)$
3. State which of the points lie on y-axis. Give a common reason.
(i) $(0,4)$
(ii) $(7,0)$
(iii) $(-5,0)$
(iv) $(0,-3)$
(v) $(-1,2)$
(vi) $(0,0)$
(vii) $(0,4)$
(viii) (-6, -6)
4. Mark the following points on the graph.
(i) $\mathrm{E}(3,7)$
(ii) $\mathrm{F}(4,0)$
(iii) $\mathrm{M}(1,-3)$
(iv) $\mathrm{N}(-2,5)$
(v) $\mathrm{P}(-1,-6)$
(vi) $\mathrm{Q}(0,8)$
(vii) A $(-4,4)$
(viii) B (2, -2)
5. XOX' and YOY' are the co-ordinate axes. Find out the co-ordinate of points, P, Q, R, S, T, U and V. Also write abscissa and ordinate in each case.
6. Plot the point $P(4,0), Q(4,4), R(0,4)$. Now join $O P, P Q, Q R, O R$. What figure do you get?
7. On which axis do the following points lie.
(i) $\mathrm{A}(0,4)$
(ii) $\mathrm{B}(-5,0)$
(iii) $\mathrm{C}(2,0)$
(iv) $\mathrm{D}(0,3)$
(v) $\mathrm{E}(0,0)$

LESSON PLAN / PERIOD PLAN

The following curricular goals and competencies are relevant to the chapter:

Curricular Goals:

Competencies:

CG-3: Discovers and proves algebraic identities and the models real- life situations in the form of equations to solve them.

CG-8: Builds skills such as visualisation, optimisation, representation, and mathematical modelling along with their application in daily life.

C-3.2: Models and solves contextualised problems using equations
(e.g., simultaneous linear equations in two variables or single
polynomial equations) and draws conclusions about a situation being modelled

C-8.1: Models daily-life phenomena and uses representations such as graphs, tables and equations to draw conclusions

MIND MAP

Equation	Interpretation	Graphical representation
$x=0$	Equation of y-axis	
$y=0$	Equation of x-axis	
$x=K$	Straight line parallel to y-axis	
$y=\mathrm{K}$	Straight line parallel to x -axis	
$y=m x$	Line passing through origin	

PERIOD WISE PLAN

PERIOD NO.	TEACHING TOPIC	LEARNING OUTCOMES
$\mathbf{1}$	Recall of previous knowledge, Introduction to Linear Equations in Two Variables	Student is able to recall linear equations in one variable, identifies variable in real life problems, eplains linear relationship in daily life situations
$\mathbf{2}$	General form of linear equations , reduction to general form, finding coefficients	Student is able to explain linear relationship, identify variable and coefficient's, compute to general form
$\mathbf{3}$	Expressing Linear Equation in One Variable into Two Variable general form	Student is able to express algebraically One variable equation into Two variable equation, shows graphically the solutions
$\mathbf{4}$	Solutions to Linear Equations in Two Variables - meaning, finding solutions and number of solutions	Student is able to use algebraic substitution to find solutions, reads graph of line.
$\mathbf{5}$	Applications of Linear Equations in Two Variables	Student is able to use algebraic substitution to find solutions, reads graph of line, creates linear equation in two variables in daily life situation
$\mathbf{6}$	Applications of Linear Equations in Two Variables	Student is able to use algebraic substitution to find solutions, reads graph of line, creates linear equation in two variables in daily life situation

Chapter Plan(Unit plan/ lesson plan)Period plan (40 mins class)

Class: $9^{\text {th }} \quad$Subject: Mathematics Total no. of periods for this chapter: 6\quadPeriod no $: 1 / 6$Sub Topic:Recall of previous knowledge - Linear Equation in One VariableIntroduction to Linear Equation in Two Variables			
Learning Outcomes \& Indicators/microcompetencies	Teaching-Learning Process This should include activities to facilitate learning along with broad time duration	Pointers for formative assessment- this should include strategies that will be used to Check for Understanding - e.g., questions/worksheets/experiments/assignments/ self-assessment checklists/etc.	Material required
CG-3: Discovers and proves algebraic identities and the models reallife situations in the form of equations to solve them. C-3.2: Models and solves contextualized problems using equations (e.g., simultaneous linear equations in two variables or single polynomial equations) and draws conclusions	Teacher makes the students recall the concept of Linear Equations in one variable through the following activity. ACTIVITY 1 (Pair Game): Fingers Game 10 min Teacher groups the students in pairs and makes them play game. Teacher asks one student to take five (5) fingers of left hand and show it to the other student and keeping right hand backwards (hides) takes one (1) finger and says, I have taken 5 fingers + ? many fingers $=6$ fingers. The other student has to guess and answer. The first students repeat it with hidden fingers varying. This process is repeated by switching the roles of the students.		

| about a situation being |
| :--- | :--- | :--- |
| modelled |

[Teacher Note: Teacher should make sure that the intention of this activity is to create linear equations in two variables and not to emphasis on system of equations, as it covered in Class 10]

Summative assessment plan- only where relevant
I. Identify the variable in the equation $3 x-5=0$
2. What is the general form of linear equation in one variable?
3. The cost of a pen is Rs. 10 and the cost of a pencil is Rs. 5. If Ramesh purchased few pens and few pencils for a total cost of Rs. 60 then create a linear equation to represent the data.

Teachers' reflections and experiences:

Teachers' reflections and experiences:
1.Did the lesson plan align with the curricular goals and competencies? If not How could be adjusted for better alignment?
2.How well did the pedagogical Strategies engage students and promote active participation in the learning process?
3.How well Did the assessment strategies measure student understanding and achievement of the learning outcomes?
4.How effective were the Materials and resources used in the lesson?
5.Did the lesson incorporate formative assessment Strategies to guide pedagogy and provide timely feedback to students?

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

	in a common format. Teacher states the general form of linear equation and expresses the equation obtained in Q1 in general form and states the values of a, b, c.	TacLearn on Meaning of Linear Equation part 2
4. What are the variables in the linear equation $5 x+3 y-6=0$ and compare with standard form and find a, b, c.		
5. Is the equation $y=\frac{3}{x}$ expressible in general form of linear equation in two variables? Give reasons in support of your answer.		

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

Class: $9^{\text {th }}$		Chapter: Linear Equations in Two Variables	
Total no. of periods for this chapter: $6 \quad$ Period no :3/6 Sub Topic:Expressing Linear Equations in One Variable into Linear Equations in Two Variables			
Learning Outcomes \& Indicators/microcompetencies	Teaching-Learning Process This should include activities to facilitate learning along with broad time duration	Pointers for formative assessment- this should include strategies that will be used to Check for Understanding - e.g., questions/worksheets/experiments/assignments/ self-assessment checklists/etc.	Material required
CG-3: Discovers and proves algebraic identities and the models reallife situations in the form of equations to solve them. C-3.2: Models and solves contextualized problems using equations (e.g., simultaneous linear equations in two variables or single polynomial equations) and draws conclusions about a situation being modelled	Teacher makes the students recollect the concept of linear equations in two variables and its standard form through series of questions.. 10 min 1. There are a total of 5 doors and windows in Shyam's house. What are the unknowns in it? Let's express it algebraically. 2. There are some cars and some bikes in a parking zone. If a total of 70 wheels are observed, then express it algebraically. 3. Express the situations in Q1 and Q2 in general form $a x+b y+c=0$. Teacher makes the students identify that Linear Equations in One Variable may be generalized as the Linear Equations in Two Variables using the discussion and	1. An equation is given as $5 x+8=9 y$. What are the variables involved? 2. Give 2 examples of equations which are not linear equations in two variables.	Students involve in computati onal activity

computational activity. 30 min

1. Teacher gives a linear equation $2 x=3-5 y$ and asks the students to express it in general form. [Teacher should ensure that students are able to do the transpositions properly, if not necessary inputs on equalities may be given]
2. Teacher invites a student of the class to give a linear equation in one variable such as $4 x=7$ and asks the students to look at it as in two variables.
(?) $x+$ (?) $y+(?)=0$
[Teacher Note: Teacher should ensure that students are able to assume the absence of y as its presence with zero (0) coefficient.
3. Teacher gives an equation on his / her own and asks the students to express it in two variables.
4. What equation do we get here?
5. What is the variable used and what are the coefficients?
6. What equation do we get here?
7. What is the variable used and what are the coefficients?
8. Write an example of linear equation in one variable and express it in the form of linear equation in two variables. And state the values of a, b, c.

Linear

Equations in Two Variables
https://www
youtube.co
$\mathrm{m} /$ watch? $\mathrm{v}=$
mZqQZfokH
00
4 min.
video
made by
Tic
TacLearn
on
Meaning of Linear Equation part 3

Summative assessment plan- only where relevant

6. What are the variables in the linear equation $5 y-6=0$ and express it in standard form and find a, b, c.
7. Is the equation $x=0$ expressible in general form of linear equation in two variables? Give reasons in support of your answer.

Teachers' reflections and experiences:

Teachers' reflections and experiences:

1.Did the lesson plan align with the curricular goals and competencies? If not How could be adjusted for better alignment?
2.How well did the pedagogical Strategies engage students and promote active participation in the learning process?
3.How well Did the assessment strategies measure student understanding and achievement of the learning outcomes?
4.How effective were the Materials and resources used in the lesson?
5.Did the lesson incorporate formative assessment Strategies to guide pedagogy and provide timely feedback to students?

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

Learning Outcomes \& Indicators/microcompetencies			g-Lea dincl rning me d	ning		cess ties to h broad	Pointers for formative assessment- this should include strategies that will be used to Check for Understanding - e.g., questions/worksheets/experiments/assignments/ self-assessment checklists/etc.	Material required
CG-3: Discovers and proves algebraic identities and the models reallife situations in the form of equations to solve them. CG-8: Builds skills such as visualization, optimization, representation, and mathematical modelling along with their application in daily life.	Teacher the mea equation Teacher follow a Teacher linear eq the othe with som correctn correct.	make ing roup activ sks ation stud val ss and 	the s solut the s ty: e stu in tw nt to es and repe	uden uden ent vari epla chec t it u 	s und a line in p crea bles the for i til it 	derstand ear 10 min pairs and ate a and ask variables its is found	1. Do you get a pair of values for the variables for sure to satisfy a given linear equation? 2. Find a solution to the equation $x-y=5$.	Students involve in computati onal activity

C-3.2: Models and solves contextualized problems using equations (e.g., simultaneous linear equations in two variables or single polynomial equations) and draws conclusions about a situation being modelled C-8.1: Models daily-life phenomena and uses representations such as graphs, tables and equations to draw conclusions	Teacher asks the students to swap their roles and repeat the activity. [Teacher Note: Teacher should ensure that student is able to check the equality between the two sides Teacher conveys that the pair of values of for the variables, x and y in this case, written as (x, y) is a solution to the equation. Teacher makes the students learn the method of finding solutions to linear equations in two variables. 30 min Teacher makes the students in group 3 students (A, B and C) and asks them to involve in computational task to find the solutions. Teacher announces a linear equation in two variables, say, $x+y=6$. Teacher asks " A " to choose a value for x and asks " B " to replace x with the value and compute value of y. Teacher asks " C " to take the value of (x, y) and show graphically. Teacher may swap the roles of A and B to get more points.	1. What is value of y if $x=0$? 2. What is value of x if $y=0$? 3. If $x=y$ what is $(x, y)=$? 4. How many solutions do we get for the equation given? 5. How many solutions a linear equation in one variable has?	Students use stationary to tabulate in books. Tic TacLearn 4 min. video link below on Solution to Linear Equations in Two Variables https://ww w.youtube .com/watc h ?v=QW

Summative assessment plan- only where relevant

8. Write 4 solutions to the equation $x+y=8$.
9. Is $(2,0)$ a solution to the equation $y=5-x$?
10. Show the graph of $x=7$ on a number line.
II. Draw the graph of the linear equation $2 x-y=-1$.

Teachers' reflections and experiences:

Teachers' reflections and experiences:
1.Did the lesson plan align with the curricular goals and competencies? If not How could be adjusted for better alignment?
2.How well did the pedagogical Strategies engage students and promote active participation in the learning process?
3.How well Did the assessment strategies measure student understanding and achievement of the learning outcomes?
4.How effective were the Materials and resources used in the lesson?
5.Did the lesson incorporate formative assessment Strategies to guide pedagogy and provide timely feedback to students?

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

Class: ${ }^{\text {th }}$ Total no. of peri Sub Topic:Applic	Subject: Mathematics for this chapter: 6 ns of Linear Equations in Two Variables	Chapter: Linear Equations in Two Variables Period no :5/6	
Learning Outcomes \& Indicators/microcompetencies	Teaching-Learning Process This should include activities to facilitate learning along with broad time duration	Pointers for formative assessment- this should include strategies that will be used to Check for Understanding - e.g., questions/worksheets/experiments/assignments/ self-assessment checklists/etc.	Material required
CG-3: Discovers and proves algebraic identities and the models reallife situations in the form of equations to solve them. CG-8: Builds skills such as visualization, optimization, representation, and mathematical modelling along with their application in daily life. C-3.2: Models and	Teacher makes the students involve in problem solving activity 10 min Teacher engages the students in problem solving activity: 1. Write each of the following equations in the form $a x+b y+c=0$ andindicate the values of a, b and c in each case: (i) $2 x+3 y=4.37$ (ii) $x-4=3 y$ (iii) $4=5 x-3 y$ (iv) $2 x=y$ [Teacher Note: Teacher should ensure that the students are able to use the transposition rules taught in previous classes.] 2. Write four solutions for each of the	Assignment: Write the equation $3 x-7 y=2.5$ in the form of $a x+b y+c=0$ and find the values of a, b, c. Assignment:	Paper, stationary , graph. Students involve in computati onal activity 6 min and 2 min Tic TacLearn videos on

solves contextualized problems using equations (e.g., simultaneous linear equations in two variables or single polynomial equations) and draws conclusions about a situation being modelled C-8.1: Models daily-life phenomena and uses representations such as graphs, tables and equations to draw conclusions	following equations: (i) $2 x+y=7$ (ii) $\pi x+y=9$ (iii) $x=4 y$ [Teacher Note: Teacher should ensure that the students are able to compute and tabulate the results and recollect the value of π.] 3. Find the value of k, if $x=2, y=1$ is a solution of the equation $2 x+3 y=k$. [Teacher has to make the students that solution satisfies the equation and hence we have to substitute the values of x and y given and create equation in k and solve it to find k.] 4. Find 5 different solutions to the equation $2 x-y=1$ and draw graph. [Teacher Note: Teacher should make sure that the students recollect the usage of graphs]	Write five solutions for the equation $x+2 y-4=0$. Assignment: If $x=4$ and $y=-1$ is a solution to the equation $p x+q y=r$ then find the relation between p, q and r. Assignment : The Distance(y) in meters and Time(t) in seconds relevant to a uniform motion may be modelled by the equation $y=4 t$. Draw its graph.	Solution to Linear Equation s in Two Variables part 2\&3 https://w ww.youtu be.com/w atch? $\mathrm{v}=\mathrm{N}$ IG3R1X WFy4 https://w ww.youtu be.com/w atch? $\mathrm{v}=\mathrm{y}$ rpZ456B bhE
Summative assessment plan- only where relevant			
12. Write 4 solutions to the equation $x+y=8$. I3. Is $(2,0)$ a solution to the equation $y=5-x$? 14. Show the graph of $x=7$ on a number line. 15. Draw the graph of the linear equation $2 x-y=-1$.			
Teachers' reflecti	and experiences:		

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

Class: $9^{\text {th }}$ Total no. of peri Sub Topic:Applic	Chapter: Linear Equations in Two Variables Period no :6/6		
Learning Outcomes \& Indicators/microcompetencies	Teaching-Learning Process This should include activities to facilitate learning along with broad time duration	Pointers for formative assessment- this should include strategies that will be used to Check for Understanding - e.g., questions/worksheets/experiments/assignments/ self-assessment checklists/etc.	Material required
CG-3: Discovers and proves algebraic identities and the models reallife situations in the form of equations to solve them. CG-8: Builds skills such as visualization, optimization, representation, and mathematical modelling along with their application in daily life. C-3.2: Models and	Teacher makes the students involve in problem solving activity Teacher engages the students in problem solving activity: 1. If $(1,-2)$ is a solution of the equation $2 x-y=p$, then find the value of p. 2. Cost of a pen is two and half times the cost of a pencil. Express this situation as alinear equation in two variables. 3. Express x in term of $y: x / 7+2 y=6$. 4. How many linear equations in x and y can be satisfied by $x=1$ and $y=2$?	Assignment: 1. If $(2,-3)$ is a solution of the equation $2 x-y=p$, then find the value of p. 2. Cost of a pen is three and half times the cost of a pencil. Express this situation as a linear equation in two variables. 3. Express y in term of $x: x / 7+2 y=6$. 4. How many linear equations in x and y can be satisfied by $x=2$ and $y=1$?	Paper, stationary etc Students involve in computati onal activity

solves contextualized

 problems using equations (e.g., simultaneous linear equations in two variables or single polynomial equations) and draws conclusions about a situation being modelledC-8.1: Models daily-life phenomena and uses representations such as graphs, tables and equations to draw conclusions
5. In aone-day international cricket match, Raina and Dhoni together scored 198 runs. Express the statement as a linear equation in two variables.
6. In some countries temperature is measured in Fahrenheit, whereas in countries like India it is measured in Celsius. Here is a linear equation that converts Fahrenheit to Celsius: $\mathrm{F}=[9 / 5] \mathrm{C}+32$. If the temperature is $-40^{\circ} \mathrm{C}$, then what is the temperature in Fahrenheit?
5. In an one day international cricket match, Kohli and Rohit together scored 146 runs. Express the statement as a linear equation in two variables.
6. In international system angles are measured in radians. It is known that π radians $=180^{\circ}$. The relationship between degree measure of an angle and its radian measure is modelled by the equation $\frac{D}{180}=\frac{R}{\pi}$. If an angle measure 120° then find the measure of the same angle in radians. Express the result in terms of π. Also, express the value as a decimal using the approximate value of $\pi=3.14$.

Summative assessment plan- only where relevant

16. A fraction becomes $\mathrm{I} / 4$ when 2 is subtracted from the numerator and 3 is added to the denominator. Represent this situation as a linear equation in two variables. Also, find two solutions for this.
17. Write 3 solutions to the equation $2 x-5 y=10$.
18. Draw the graph of the linear equation $y=\frac{2}{3} x+\frac{1}{3}$. Check from the graph that $(7,5)$ is a solution of the linear equation.?

Teachers' reflections and experiences:

Teachers' reflections and experiences:
1.Did the lesson plan align with the curricular goals and competencies? If not How could be adjusted for better alignment?
2.How well did the pedagogical Strategies engage students and promote active participation in the learning process?
4.How effective were the Materials and resources used in the lesson?
5.Did the lesson incorporate formative assessment Strategies to guide pedagogy and provide timely feedback to students?

Extended Learning:

http://ncert.nic.in/ncerts///ieep204.pdf

> (for more practice)

5. INTRODUCTION TO EUCLID'S GEOMETRY

https://epathshala.nic.in/topic-d.php?id=0962CH05

THE FOLLOWING CURRICULAR GOALS (CG) AND COMPETENCIES (C) WILL BE DEVELOPED THROUGH THIS CHAPTER

CURRICULAR GOALS(CG)	COMPETENCIES (C)
CG-4: Analysis characteristics and properties of two-dimensional geometric shapes and develops mathematical arguments to explain geometric relationships	C-4.I: Describes relationships including congruence of twodimensional geometric shapes (such as the lines angles triang to make and test conjectures and solve problems C-4.2: Proves theorems using Euclid's axioms and postulates triangles and quadrilaterals, and applies them to solve geome problems
CG-7: Begins to perceive and appreciate the axiomatic and deductive structure of Mathematics	C-7.1: Proves mathematical statements and carries out geometric constructions using stated assumptions, axioms, postulates, definitions and mathematics vocabulary C-7.3: Proves theorems using Euclid's axioms and postulates angles, triangle, quadrilaterals, circles, area-related theorems triangles and parallelograms
CG-I0: Knows and appreciates important contributions of mathematicians from India and around the world	C-IO.I: Recognises the important contributions made by mathematicians (Indian and others) in the field of Mathemati (such as evolution of members, geometry, algebra) C-I0.2: Recognizes modern contributions to Mathematics ma in both India and abroad, and understands the next frontiers : the next major open questions in the field of Mathematics

MIND MAP

PERIOD WISE PLAN

Period No	Teaching Topic	Learning Outcomes
$\mathbf{1}$	History	Understands Euclid's Contribution in Plane Geometry
$\mathbf{2}$	Euclid's Definitions	Defines terms and knows undefined terms in Geometry
$\mathbf{3}$	Axioms	Understands Euclid's Axioms
$\mathbf{4}$	Postulates	Understands Euclid's Postulates
$\mathbf{5}$	Theorems	Proves Theorems

Key concepts: I. Introduction to Euclid geometry, Define and undefined terms, Euclid's definitions, Axioms and postulates

Chapter Plan(Unit plan/ lesson plan)Period plan (40 mins class)

	In groups, answer the following? See the above picture, Guess What is the picture about? Which shapes are in this figure? What geometrical shapes does it resemble? Can you guess shape of the base is? Teacher introduces the Egyptian Pyramids [Teacher Note: Focus on the use of geometry in building beautiful structures and monuments] Teacher further extends the discussion to the meaning of geometry, origin of geometry. Teacher shares famous people contribution towards geometry for the development of geometry.	Describe the word geometry in your own words? In how many chapters Euclid divided his famous book "THE ELEMENTS"? To which country Euclid belongs? Who is called father of geometry?	

Summative assessment plan- only where relevant

I. Write the history of geometry in your own words.

Teachers' reflections and experiences:

I.Did the lesson plan align with the curricular goals and competencies? If not How could be adjusted for better alignment?
2.How well did the pedagogical Strategies engage students and promote active participation in the learning process?
3.How well Did the assessment strategies measure student understanding and achievement of the learning outcomes?
4.How effective were the Materials and resources used in the lesson?
5.Did the lesson incorporate formative assessment Strategies to guide pedagogy and provide timely feedback to students?

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

Summative assessment plan- only where relevant

I. Write any five Euclid's definitions.

Teachers' reflections and experiences:

I .Did the lesson plan align with the curricular goals and competencies? If not How could be adjusted for better alignment?
2.How well did the pedagogical Strategies engage students and promote active participation in the learning process?
3.How well Did the assessment strategies measure student understanding and achievement of the learning outcomes?
4.How effective were the Materials and resources used in the lesson?
5.Did the lesson incorporate formative assessment Strategies to guide pedagogy and provide timely feedback to students?

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

	Teacher introduces the Euclid axioms through playing video. (20 min) Dileep has as many biscuits as Rohit and Rohit has as many biscuits as Prabhu. Can you tell any relationship between the number of biscuits Dileep and Prabhuhas? What is your observation? Teacher makes the students into groups, through playing the video explain all Euclid axioms? And also, teacher will explain remaining axioms as the above? Say some Euclid axioms? Teacher asks the students to answer the following in groups: (10 min)	Write Euclid $\mathrm{I}^{\text {st }}$ axiom? Write the Euclid axioms?	

Summative Assessment Plan- only where relevant

1.If a point Q lies between two points P and R such that $P Q=Q R$, prove that $P Q=\frac{1}{2} P R$.
2. In the adjacent figure, we have $B X=\frac{1}{2} A B, B Y=\frac{1}{2} B C$ and $A B=B C$. Show that $\mathrm{BX}=\mathrm{BY}$.

Teachers' reflections and experiences:

I.Did the lesson plan align with the curricular goals and competencies? If not How could be adjusted for better alignment?
2.How well did the pedagogical Strategies engage students and promote active participation in the learning process?
3.How well Did the assessment strategies measure student understanding and achievement of the learning outcomes?
4.How effective were the Materials and resources used in the lesson?
5.Did the lesson incorporate formative assessment Strategies to guide pedagogy and provide timely feedback to students?

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

Class: $9^{\text {th }}$ Subject: Mathematics Total no. of periods for this chapter:6 Chapter: INTRODUCTION TO EUCLIDS GEOMETRY Key concepts: Introduction to Euclid's geometry, Euclid's definitions, undefined terms, Axioms, postulates Topic: Postulates			
Learning Outcomes \& Indicators/microcompetencies	Teaching-Learning Process This should include activities to facilitate learning along with broad time duration	Pointers for formative assessmentthis should include strategies that will be used to Check for Understanding - e.g., questions/worksheets/experiments lassignments/self-assessment checklists/etc.	Materi requir
Know the undefined terms in geometry. Differentiate and classify the point, line, plane related to objects.	Testing previous knowledge (10 min) 1.Write any 2 Euclid's axioms? 2. Axioms are assumed (A) universal truths in all branches of mathematics (B) universal truths specific to geometry (C) theorems (D) definitions 3. John is of the same age as Mohan. Ram is also of the same age as Mohan. State the Euclid's axiom that illustrates the relative ages of John and Ram (A) First Axiom (B) Second Axiom (C) Third Axiom (D) Fourth Axiom 4. It is known that if $x+y=10$ then $x+y+z=10+z$. The Euclid's axiom that illustrates this statement is :		Postulat https://wwv tube.com/w Ic\&t=178 SOURCE https://wwv cLearnEng

Summative assessment plan- only where relevant

1. Why is Axiom 5, in the list of Euclid's axioms, considered a 'universal truth'? (Note that the question is not about the fifth postulate.)

Teachers' reflections and experiences:

I.Did the lesson plan align with the curricular goals and competencies? If not How could be adjusted for better alignment?
2.How well did the pedagogical Strategies engage students and promote active participation in the learning process?
3.How well Did the assessment strategies measure student understanding and achievement of the learning outcomes?
4.How effective were the Materials and resources used in the lesson?
5.Did the lesson incorporate formative assessment Strategies to guide pedagogy and provide timely feedback to students?

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

Class: $9^{\text {th }}$ Total no. of periods for Topic: Problems base	```Subject: Mathematics Chapter: INTRODUCTION TO EUCLIDS GEOMETRY this chapter: } Period no : 5 on Euclid axioms and Postulates```		
Learning Outcomes \& Indicators/microcompetencies	Teaching-Learning Process This should include activities to facilitate learning along with broad time duration	Pointers for formative assessmentthis should include strategies that will be used to Check for Understanding - e.g., questions/worksheets/experiments lassignments/self-assessment checklists/etc.	Mater requir
Applies the concept of undefined terms, axioms and postulates of Euclid's Geometry. Differentiate and classify the point, line, plane related objects etc	Teacher engages the students in applying the axioms and postulates proposed by Euclid: (25 min) 1. Prove that an equilateral triangle can be constructed on any given line segment. 2. Daw a line segment of any length says $P Q$? 3. Draw a circle with Centre P and radius PQ. Draw another circle with Centre Q and radius QP. Mark the intersection point R where two circles meet. Join ' R ' to P and Q to form $\triangle P Q R$. IS $P Q=P R$? Is $P Q=Q R$? [Use Euclid's axiom, two things which are equal to same thing are equal to each another] So, can, we say $\triangle P Q R$ is an equilateral triangle.	I.Write Euclid 3rd postulate? 2.Which Euclid postulate is used to prove the given triangle is equilateral? 3. Draw an equilateral triangle whose sides are 5.2 cm each.	https://yout K6R4MHB2u i=Or5sxaelm YUV SOURCE::htt www.youtuk m/@Infinityl NEET Problems Axiom

| 4. In the following figure, a line n falls on lines I and m |
| :--- | :--- | :--- |
| such that the sum of the interior angles 1 and 2 is less |
| than 180°, then what can you say about lines I and m . |
| Work sheet: (15 min) |
| 1. Write whether the following statements are True or False? |
| Justify your answer. |
| (i)Pyramid is a solid figure, the base of which is a
 triangle or square or some other polygon and its
 side faces are equilateral triangles that converges
 to a point at the top.
 In Vedic period, squares and circular shaped altars
 were used for household rituals, while altars whose
 shapes were combination of rectangles, triangles
 and trapeziums were used for public worship.
 In geometry, we take a point, a line and a plane as
 undefined terms.
 If the area of a triangle equals the area of a
 rectangle and the area of the rectangle equals that
 of a square, then the area of the triangle also
 equals the area of the square |
| (v) Euclid's fourth axiom says that everything equals |

Summative assessment plan- only where relevant

Q.1: What are the five postulates of Euclid's Geometry?
Q.2: If a point C lies between two points A and B such that $A C=B C$,
then prove that $A C=1 / 2 A B$. Explain by drawing the figure.

Teachers' reflections and experiences:

I.Did the lesson plan align with the curricular goals and competencies? If not How could be adjusted for better alignment?
2.How well did the pedagogical Strategies engage students and promote active participation in the learning process?
3.How well Did the assessment strategies measure student understanding and achievement of the learning outcomes?
4.How effective were the Materials and resources used in the lesson?
5.Did the lesson incorporate formative assessment Strategies to guide pedagogy and provide timely feedback to students?

Work Sheet: 1

Introduction to Euclid's Geometry (Class 9)

1) Axioms are assumed
(A) universal truths in all branches of mathematics
(B) universal truths specific to geometry \quad (C) theorems (D) definitions
2) John is of the same age as Mohan. Ram is also of the same age as Mohan. State the Euclid's axiom that illustrates the relative ages of John and Ram
(A) First Axiom (B) Second Axiom (C) Third Axiom (D) Fourth Axiom
3) The number of dimensions, a solid has:
(A) 1
(B) 2
(C) 3
(D) 0
4) The total number of propositions in the Elements are:
(A) 465
(B) 460
(C) 13
(D) 55
5) A pyramid is a solid figure, the base of which is
(A) only a triangle (B) only a square (C) only a rectangle (D) any polygon
6) The side faces of a pyramid are:
(A) Triangles (B) Squares (C) Polygons (D) Trapeziums
7) In ancient India, the shapes of altars used for house hold rituals were
(A) Squares and circles (B) Triangles and rectangles
(C) Trapeziums and pyramids (D) Rectangles and squares
8) Which of the following needs a proof?
(A) Theorem (B) Axiom (C) Definition (D) Postulate
9). Euclid stated that all right angles are equal to each other in the form of
(A) an axiom (B) a definition (C) a postulate (D) a proof
9) 'Lines are parallel if they do not intersect' is stated in the form of
(A) an axiom (B) a definition (C) a postulate (D) a proof
10) "A square is a polygon made up of four line segments, out of which, length of three line segments are equal to the length of fourth one and all its angles are right angles". Define the terms used in this definition which you feel necessary. Are there any undefined terms in this? Can you justify that all angles and sides of a square are equal?
11) Study the following statement: "Two intersecting lines cannot be perpendicular to the same line". Check whether it is an equivalent version to the Euclid's fifth postulate.
12) Read the following statements which are taken as axioms
(i) If a transversal intersects two parallel lines, then corresponding angles are not necessarily equal. (ii) If a transversal intersects two parallel lines, then alternate interior angles are equal. Is this system of axioms consistent? Justify your answer.
13) Read the following two statements which are taken as axioms
(i) If two lines intersect each other, then the vertically opposite angles are not equal. (ii) If a ray stands on a line, then the sum of two adjacent angles so formed is equal to 180°. Is this system of axioms consistent? Justify your answer.

Work Sheet: 2

Introduction to Euclid's Geometry (Class 9)

SUBTOPIC: EUCLID'S DEFINITIONS, AXIOMS AND POSTULATES

1. The three steps from solids to points are 1
(a) solids-surfaces-lines-points (b) solids-lines-surfaces-points
(c) lines-points-surfaces-solids (d) lines-surfaces-points-solids
2. The number of dimensions, a solid has 1
(a) 1 (b) 2 (c) 3 (d) 0
3. The number of dimensions, a surface has 1
(a) 1 (b) 2 (c) 3 (d) 0
4. Euclid divided his famous treatise 'The Elements' into 1
(a) 13 chapters (b) 12 chapters
(c) 11 chapters (d) 9 chapters
5. In Indus Valley Civilisation (about 3000 BC), the bricks used for construction 1
work was having dimensions in the ratio
(a) 1: 3: 4 (b) 4: $2: 1$ (c) $4: 4: 1$ (d) $4: 3: 2$
6. The number of interwoven isosceles triangles in Sriyantra (in the Atharvaveda) 1
is \qquad -.
7. Greek's emphasised on 1
(a) inductive reasoning (b) deductive reasoning
(c) Both (a) and (b) (d) practical use of geometry
8. In ancient India, altars with combination of shapes like rectangles, triangles 1 and trapeziums were used for
(a) public worship (b) household rituals
(c) Both (a) and (b) (d) None of these
9. Thales belongs to the country 1
(a) Babylonia (b) Egypt (c) Greece (d) Rome
10. Which of the following needs a proof? 1
(a) Theorems (b) Axiom (c) Definition (d) Postulate

LINES AND ANGLES

$0952 \mathrm{CHO6}$

CURRICULAR GOALS(CG)	COMPETENCIES (C)
CG-4: Analysis characteristics and properties of two-	C-4.1: Describes relationships including congruence of
dimensional geometric shapes and develops	two-dimensional geometric shapes (such as the lines
mathematical arguments to explain geometric	angles triangles) to make and test conjectures and solve
relationships	problems

MIND MAP

PERIOD WISE PLAN

Learning Outcome:

Applies axiomatic approach and derives proof of mathematical statements particularly relate to geometrical concepts, like parallel lines, triangles, quadrilaterals, circles etc. in order to solve problems using them.

PERIOD NO.	TEACHING TOPIC	LEARNING OUTCOMES/Objectives
$\mathbf{1}$	Basic terms and Definitions	Undrestanding basic terms and definition of lines and angles
$\mathbf{2}$	Types of angles and pairs of angles	Undrestanding different kinds of angles and linear pair
$\mathbf{3}$	Practice Period	Reinforcing the concepts lolving problems based on the properties of vertex opposite angles and linear pair angles
$\mathbf{4}$	Vertex opposite angles and linear pair	Understaning relation of vertically oppsite angles and linear pair angles
$\mathbf{5}$	Vertically opposite angles and linear pair angles	Reinforcing the learned concepts
$\mathbf{6}$	Practice period	Relation between angles when transversal meet parallel lines
$\mathbf{7}$	Parallel lines and transversal	

Key concepts: 1. Basic terms and Definitions 2. Pairs of angles 3. Parallel lines and Transversal 4. Lines parallel to the same line 5. Angle sum property of triangle

PERIOD PLAN

Class: $9^{\text {th }}$
Total no. of periods for this chapter:7
Sub Topic: Basic terms and Definitions

Learning Outcomes \& Indicators/Micro Components	Teaching Learning Process	Assessment	TLM
LEARNING OUTCOMES Applies axiomatic approach and derives proofs of mathematical statements particularly related to geometrical concepts, like parallel lines, triangles, quadrilaterals, circles etc. in order tosolve problems using them. Differentiates between lines, line segments and rays (C65). Learning Objectives Define segment, ray, collinear points, non-collinear points, acute angle, right angle, obtuse angle, straight angle, reflex angle, complementary angles, Supplementary angles and identify them in a given figure. Pairs of angles Label angles created by two intersecting lines and identify vertically opposite pairs, adjacent angles, linear pairs, complementary	Teacher introduces the topic lines and angles through discussion mode and doing activities 30 min Activity (ii) $\quad 0$ (iii) $\stackrel{\rightharpoonup}{\mathrm{R}} \quad \stackrel{\mathrm{S}}{ }$ Observe the figures and discuss the properties. 1) How many points are needed to draw a line? 2) Which of the above figures (i) to iv has measurement? 4) How many lines pass through a point?	1) Distinguish between Ray, line and line segment. 2) Number of lines passes through a point are \qquad 3) Minimum number of points required to draw a line are \qquad	Geometry Box GeoGebra Application

/supplementary pairs of angles Apply the concepts of linear pairs of angles and vertically opposite angles and establish relationships between the angles in a given figure and solve for missing values. Parallel Lines and a Transversal Label angles created by a transversal intersecting two parallel lines and identify corresponding angles, alternate angles, interior angles and define relationships between these angles. Lines Parallel to the same Line Find out the unknown angles created by a transversal in a given figure and infer if the lines are parallel or not. Angle Sum Property of a Triangle Define the relationship between angles formed when a triangle is placed between two parallel lines and prove that the exterior angle of a triangle is the sum of the two opposite interior angles.	 4) How many lines pass through the point P ? 5) How many minimum points are required to draw a line? Activity Draw two different (distinct) lines on a plane? What is your observation?	4) In how many ways can we draw two lines on a plane? Explain in detail.	Basic Terms and Definitions c lines and angles Introduction of lines and angles (video from tic Ta Learn English)

	lines and angles Architects use the concept of lines and angles in planning and construction. Everywhere in our classroom we find lines and angles. Ask students to discuss these questions: What is the angle between wall and floor, and wall and ceiling in the classroom? What is the angle between wall and the door when it is closed? How does the angle change when the door is open but not fully? Group activity: Measure the angle between a staircase and the floor. If the angles is increased i.e. if the staircase is made steeper, would it become more difficult to climb?	Draw a figure which represent non collinear points?	Match sticks

Summative assessment

1. Match each word with the correct statement. Write the correct letter on the line.(i) Point
a) Part of a line having one end point.(ii) Line Segment
b) An exact location in space.(iii) Angle(iv) Ray(v) Plane(vi) Perpendicular Lines(vii) Parallel Lines
c) The shape formed when two rays meet at a vertex.
d) A flat shape which extends endlessly in all directions.
e) Two or more lines that travel in the same direction and never meet.
f) Part of a line having two endpoints.
g) Two lines that cross to form a right angle.
h) Two or more lines that cross or meet each other at a point.

Teacher Reflexions:

1.Did the lesson plan align with the curricular goals and competencies? If not How could be adjusted for better alignment?
2.How well did the pedagogical Strategies engage students and promote active participation in the learning process?
3.How well Did the assessment strategies measure student understanding and achievement of the learning outcomes?
4.How effective were the Materials and resources used in the lesson?
5.Did the lesson incorporate formative assessment Strategies to guide pedagogy and provide timely feedback to students?

PERIOD PLAN

Class: $9^{\text {th }}$
Subject: Mathematics
Chapter: Lines and Angles
Sub Topic: Basic terms and Definitions Total no. of periods for this chapter:7 Period no :2

Learning Outcomes \& Indicators/Micro Components	Teaching Learning Process	Assessment	TLM
C-4.1: Describes relationships including congruence of twodimensional geometric shapes (such as the lines angles triangles) to make and test conjectures and solve problems Understanding different kinds of angles, adjacent angles, vertically opposite angles and linear pair	Teacher testing prerequisite knowledge: (5 min) Examine your surroundings and identify the angles. (10 min)	Identify the lines, angels and other geometrical shapes.	Geometry Box GeoGebra Application

	Types of angles Teacher explains different types of pairs of angles through playing videos and showing models and illustrating real life examples Pairs of Angles (15 min) Activity Observe the following figure. How do we say angle AOC, angle COB? (adjacent angles) Give counter examples, and explain why they are not adjacent.	Describe adjacent angles in your own words.	Basic Terms and Definitions of lines and angles Video from Tic-Tac learnenglish adjacent angles

(

	List out the vertically opposite angles in the following figure. What is your observation? Teacher makes the students into pairs and introduces complementary and supplementary angles. What is sum of two angles in each case? Are these adjacent angles?	Describe vertically opposite angles in your own words. Draw different intersecting lines and measure vertically opposite angles so formed. Write your observation. What is your conclusion?	

PERIOD PLAN

Class: $9^{\text {th }} \quad$ Subject: Mathematics Chapter: Lines and Angles
Sub Topic: Basic terms and Definitions Total no. of periods for this chapter:7Period no :3
Sub Topic: work sheet 1(Practice of questions/Remedial Class)

Learning Outcomes \& Indicators/Micro Components	Teaching Learning Process	Assessment	TLM
C-4.1: Describes relationships including congruence of twodimensional geometric shapes (such as the lines angles triangles) to make and test conjectures and solve problems LEARNING OUTCOMES Applies relationship between two angles (vertically opposite angles, linear-pair angles, adjacent angles,	Teacher focuses on explaining the axioms related to pair of angles. (40 min) Teacher makes the students into groups ask them to solve and present Infront of the class. 1) If two angles are complements of each other, then what is the type of each angle? 2) If two complementary angles are in the ratio $7: 3$, then find their angles. (Hint: $7 \mathrm{x}+3 \mathrm{x}=90$) 3) If two supplementary angles are in the ratio $4: 5$, then find their angles. (Hint: $4 x+5 x=180$) 4) Find the supplement of $3 / 5$ of right angle. (Hint: $180-3 / 5$ of 90) 5) Find the measure of an angle, if six times its complement is 12° less than twice its supplement. $\{$ Hint: $6(90-x)=2(180-x)-12\}$ 6) If angles with measures x and y form a complementary pair, then which of the following	1) If two supplementary angles are in the ratio 11:7, then find their angles. 2) Find the measure of an angle which is 36° more than its complementary. Angle.	Geometry Box GeoGebra Application

supplementary angles and complementary angles) to find unknown values - Learning Indicator C70
measures of angles will form a supplementary pair?
A) $\left(x+47^{\circ}\right),\left(y+43^{\circ}\right)$
B) $\left(x-23^{\circ}\right),\left(y+23^{\circ}\right)$
C) $\left(x-43^{\circ}\right),\left(y-47^{\circ}\right)$
D) No such pair is possible

Summative assessment plan- only where relevant

Teacher Reflexions:

1.Did the lesson plan align with the curricular goals and competencies? If not How could be adjusted for better alignment?
2.How well did the pedagogical Strategies engage students and promote active participation in the learning process?
3.How well Did the assessment strategies measure student understanding and achievement of the learning outcomes?
4.How effective were the Materials and resources used in the lesson?
5.Did the lesson incorporate formative assessment Strategies to guide pedagogy and provide timely feedback to students?

Class: $9^{\text {th }}$
Total no. of periods for this chapter:7
Sub Topic: Theorem 1

Learning Outcomes \& Indicators/microcompetencies	Teaching-Learning Process This should include activities to facilitate learning along with broad time duration	Pointers for formative assessment- this should include strategies that will be used to Check for Understanding - e.g., questions/worksheets/ex periments/assignments/s elf-assessment checklists/etc.	Material required
C-4.1: Describes relationships including congruence of twodimensional geometric shapes (such as the lines angles triangles) to make and test conjectures and solve problems	Activity Draw two different lines $P Q$ and RS on a paper. In how many ways can we draw them? Observe the lengths of common perpendiculars at different points on the parallel lines. Are they equal?	What do you notice?	Geometry Box GeoGebra Application

| What is the sum of angle 1 and 2. |
| :--- | :--- |
| What is the sum of angle 2 and 3 |
| By euclid axiom |
| $\angle 1+\angle 2=\angle 2+\angle 3=180^{\circ}$ |
| What do you say about angle 1 and angle 3? |
| Write your conclusion? |
| Teacher makes the stiudent into groups and ask |
| them to solve the following problem and present |
| infront of the class? |

PERIOD PLAN

Class: $9^{\text {th }}$
Total no. of periods for this chapter:7
Subtopic: Problems related to vertically opposite theorem (work sheet 2)

Learning Outcomes \& Indicators/Micro Components	Teaching Learning Process	Assessment	TLM
LEARNING OUTCOMES Applies axiomatic approach and derives proofs of mathematical statements particularly related to geometrical concepts, like parallel lines, triangles, quadrilaterals, circles etc. in order to solve problems using them. Applies relationship between two angles (vertically opposite angles, linear-pair angles, adjacent angles, supplementary angles and complementary angles) to find unknown values - Learning Indicator C70 Learning Objectives Define segment, ray, collinear points, non-collinear points, acute angle, right angle, obtuse angle, straight angle, reflex angle, complementary angles, Supplementary angles and identifythem in a given figure.	1Teacher makes the students into groups and ask them to solve the given questions and present Infront of the class 1.Find \angle SRT in the following figure. 2. In Fig. lines $P Q$ and $R s$ intersect each other at point O . If $\angle \mathrm{POR}: \angle \mathrm{ROQ}=5: 7$, find all the angles.	1. Find x and y in the following figure	Geometry Box GeoGebra Application

Pairs of angles Label angles created by two intersecting lines and identify vertically opposite pairs, adjacent angles, linear pairs, complementary /supplementary pairs of angles Apply the concepts of linear pairs of angles and vertically opposite angles and establish relationships between the angles in a given figure and solve for missing values. Parallel Lines and a Transversal Label angles created by a transversal intersecting two parallel lines and identify corresponding angles, alternate angles, interior angles and define relationships between these angles. Lines Parallel to the same Line Find out the unknown angles created by a transversal in a given figure and infer if the lines are parallel or not. Angle Sum Property of a Triangle Define the relationship between angles formed when a triangle is placed between two parallel lines and prove that the exterior angle of a triangle is the sum of the two	3.In Fig. ray OS stands on a line POQ. Ray OR and ray OT are angle bisectors of $\angle \mathrm{POS}$ and $\angle S O Q$, respectively. If $\angle P O S=x$, find $\angle R O T$. 4.In Fig. OP, OQ, OR and OS are four rays. Prove that $\angle \mathrm{POQ}+\angle \mathrm{QOR}+\angle \mathrm{SOR}+\angle \mathrm{POS}=360^{\circ}$	2.In Fig. ray OS stands on a line POQ. Ray OR and ray

opposite interior angles.		OT are angle bisectors of $\angle P O S$ and $\angle S O Q$, respectively. If $\angle P O S=x$, find $\angle R O T$.	

Summative assessment plan- only where relevant

1) Find x and y in the following Fig.

2) Find x in the following figures.
1.

2.

3.

4.

Teacher Reflexions:

PERIOD PLAN

Class: $9^{\text {th }}$
 Total no. of periods for this chapter:7

Subject: Mathematics

Chapter: Lines and Angles
 Period no: 6 (work sheet 3)

Learning Outcomes \& Indicators/Micro Components	Teaching Learning Process	Assessment	TLM
LEARNING OUTCOMES Applies axiomatic approach and derives proofs of mathematical statements particularly related to geometrical concepts, like parallel lines, triangles, quadrilaterals, circles etc. in order to solve problems using them. Learning Objectives Define segment, ray, collinear points, non-collinear points, acute angle, right angle, obtuse angle, straight angle, reflex angle, complementary angles, Supplementary angles and identifythem in a given figure. Pairs of angles Label angles created by two intersecting lines and identify vertically opposite pairs, adjacent angles, linear pairs, complementary /supplementary pairs of angles	Teacher makes the students into groups and ask them to solve the given problems. Exercise 6.1 1. In Fig.6.13, lines $A B$ and $C D$ intersects at O . If $\angle \mathrm{AOC}+\angle \mathrm{BOE}=70^{\circ}$ and $\angle B O D=40^{\circ}$, find $\angle B O E$ and reflex $\angle \mathrm{COE}$. Fig. 6.13 2. In Fig.6.14 lines XY and MN intersect at O. If $\angle \mathrm{POY}=90^{\circ}$ and	In the figure, lines PQ and RS intersect at point 0 . If $\angle P O R: \angle R O Q=5: 7$, find all the angles.	Geometry Box GeoGebra Application The tic taclearn English video deals with basic terms and definition of lines and angles. Teacher can use the

Apply the concepts of linear pairs of angles and vertically opposite angles and establish relationships between the angles in a given figure and solve for missing values. Parallel Lines and a Transversal Label angles created by a transversal intersecting two parallel lines and identify corresponding angles, alternate angles, interior angles and define relationships between these angles. Lines Parallel to the same Line Find out the unknown angles created by a transversal in a given figure and infer if the lines are parallel or not. Angle Sum Property of a Triangle Define the relationship between angles formed when a triangle is placed between two parallel lines and prove that the exterior angle of a triangle is the sum of the two opposite interior angles.	$a: b=2: 3$, find c. Fig. 6.14 3. In Fig.6.15, $\angle \mathrm{PQR}=\angle \mathrm{PRQ}$, then prove that $\angle \mathrm{PQS}=\angle \mathrm{PRT}$. Fig. 6.15 4. In Fig. 6.16, if $x+y=w+z$, then prove that AOB is a line.	In the below figure, AB, CD and EF are three concurrent lines intersecting at O. Find the value of y.

Summative assessment plan- only where relevant

Ray $O E$ bisects $\angle A O B$ and $O F$ is the ray opposite $O E$. Show that $\angle F O B$
$=\angle \mathrm{FOA}$.

Teachers' reflections and experiences:

1.Did the lesson plan align with the curricular goals and competencies? If not How could be adjusted for better alignment?
2.How well did the pedagogical Strategies engage students and promote active participation in the learning process?
3.How well Did the assessment strategies measure student understanding and achievement of the learning outcomes?
4.How effective were the Materials and resources used in the lesson?
5.Did the lesson incorporate formative assessment Strategies to guide pedagogy and provide timely feedback to students?

PERIOD PLAN

Class: $9^{\text {th }} \quad$ Subject: Mathematics
Total no. of periods for this chapter: 7
Chapter: Lines and Angles
Sub Topic: Parallel lines and Transversal Period no :7 (Example questions)

Apply the concepts of linear pairs of angles and vertically opposite angles and establish relationships between the angles in a given figure and solve for missing values. Parallel Lines and a Transversal Label angles created by a transversal intersecting two parallel lines and identify corresponding angles, alternate angles, interior angles and define relationships between these angles. Lines Parallel to the same Line Find out the unknown angles created by a transversal in a given figure and infer if the lines are parallel or not. Angle Sum Property of a Triangle Define the relationship between angles formed when a triangle is placed between two parallel lines and prove that the exterior angle of a triangle is the sum of the two opposite interior angles.	Teacher makes the students into groups and ask them to solve and present Infront of the class. 1) Find p. 2) Find a,b,c and d 3.In Fig. 6.19, if $P Q \\| R S$, $\angle M X Q=135^{\circ}$ and $\angle M Y R=40^{\circ}$, find $\angle X M Y$.	In the given figure $A B \\| C D, A$ is right angle then find angle ECD.	The above Tic tac learn English videos regarding parallel lines, transversal and relation betwee angles. Teacher can use th video to reinforce th concept visually

Remaining Periods for Activities, Remedial Teaching, work sheets and Practice

Activity period

Exemplary Learning

Work Sheet-1
Lines and Angles (Class-9)

1) In the figure $\mathrm{I} \| \mathrm{m}$ and $\angle 1=(2 x+y)^{\circ}, \angle 4+(x+2 y)^{\circ}$. Find $\angle 7$ and $\angle 8$.

2) In Fig. 6.22, $A B \| C D$ and $C D \| E F$. Also $E A \perp A B$. If $\angle B E F=55^{\circ}$, find the values of x, y and z.

Fig. 6.22
3) In Fig. 6.23, if $A B\|C D, C D\| E F$ and $y: z=3: 7$, find x.

4)

Fig. 6.23

5) In a quadrilateral $A B C D, A B \| C D$ and $A D \| B C$, Prove that $\angle A B C=\angle A D C$ In Fig. 6.24, if $A B \| C D, E F \perp C D$ and $\angle G E D=126^{\circ}$, Find $\angle A G E, \angle G E F$ and $\angle R G E$.

Fig. 6.24
6) In Fig. 6.25, if $P Q \| S T, \angle P Q R=110^{\circ}$ and $\angle R S T=130^{\circ}$, find $\angle Q R S$.

Fig. 6.25
7) Find x

8) Find angle 2 in the following figure.

Work Sheet-2

Lines and Angles (Class-9)

1) In Fig. 6.27, $P Q$ and RS are two mirrors placed parallel to each other. An incident ray $A B$ strikes the mirror $P Q$ at B, the reflected ray moves along the path $B C$ and strikes the mirror $R S$ at C and again reflects back along $C D$. Prove that $A B \| C D$.

Fig. 6.27
2) Find x

3.

Given that each of the angles $A O C$ and $A O B$ is a right angle. Show that BOC is a line.
4. The difference of two complementary angles 40°. Find the angles.
5. Find x, y and z.

6. Find m

7. Find x in the following figure.

8. Find x and y in the following figure.

Work Sheet-3

Lines and Angles (Class 9)

1) Bisectors of interior $\angle B$ and exterior $\angle A C D$ of a $\triangle A B C$ intersect at point T. Prove that $\angle B T C=1 / 2 \angle B A C$.

2) In the below figure, AB, CD and EF are three concurrent lines intersecting at O . Find the value of y .

3) In the figure, the side $Q R$ of $\triangle P Q R$ is produced to a point S. If the bisectors of $\angle P Q R$ and $\angle P R S$ meet at point T, then prove that $\angle Q T R=1 / 2$ $\angle Q P R$.

4) AP and BQ are the bisectors of the two alternate interior angles formed by the intersection of a transversal t with parallel lines 1 and m (below figure). Show that $\mathrm{AP} \| \mathrm{BQ}$.

5) If $\mathrm{AB}\|\mathrm{CD}, \mathrm{CD}\| E F$ and $\mathrm{y}: \mathrm{z}=3: 7$, find x from the below figure.

INTRODUCTION

[Go to http://epathshala.nic.in/QR/?id=0962CH07]

[Type or Scan QR Code]

7.TRIANGLES

Chapter Plan (Unit plan/ lesson plan)

The following curricular goals (CG) and competencies (c) will be developed through this chapter
CG-4: Analyses characteristics and properties of two-dimensional geometric shapes and develops mathematical arguments to explain geometric relationships.

C-4.1: Describes relationships including congruence of two-dimensional geometric shapes (lines, angles, triangles) to make and test conjectures and solve problems.

C-4.2: Proves theorems using Euclid's axioms and postulates for triangles and quadrilaterals and applies them to solve geometric problems.

CG-7 Begins to perceive and appreciate mathematics axiomatic and deductive structures.
C-7.3: Proves theorems using Euclid's axioms and postulates forangles, triangles and quadrilateral, circles area related theorem for triangles and parallelogram.

C-7.4: Constructs different geometrical shapes like bisectors of line segment, angles and their bisectors, triangles and other polygons satisfying given constraints.

PERIOD WISE PLAN

Period No	Teaching Topic	
\mathbf{I}	Introduction of the chapter	Works out ways to differentiate between congruent and similar figures
2	SAS congruency rule	Establishes property for congruency of two triangles logically using SAS rule
3	ASA congruency rule	Establishes property for congruency of two triangles logically using ASA rule
4	AAS congruency rule	Establishes property for congruency of two triangles logically using AAS rule
5	Theorem 7.2	Proves theorem related to congruency of triangles
6	Problem solving on in Ex:7.2	Solves problems related to congruencyof triangles
7	SSS congruency	Establishes property for congruency of two triangles logically using SSS rule
8	RHS Congruency	Establishes property for congruency of two triangles logically using RHS rule
9	Worksheet I	Solves problems based on congruency criteria
10	Worksheet II	Solves problems based on congruency criteria

1. Key concepts:Introduction to triangles
a. Congruence of triangles
b. Criteria for congruence of triangles (CPCT, SAS, ASA)
c. Some properties of triangles
d. Criteria for congruence of triangles (SSS, RHS)

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

Class: $9^{\text {th }}$ Subject: Mathematics Chapter: Triangles			
Total no. of periods for this chapter: 10 Period no: I/lo Sub Topic: Congruency of Triangles-Introduction			
Learning Outcomes \& Indicators/microcompetencies	Teaching-Learning Process This should include activities to facilitate learning along with broad time duration	Pointers for formative assessment- this should include strategies that will be used to Check for Understanding - e.g., questions/worksheets/experiments/assignme nts/self-assessment checklists/etc.	Materi require
C-4.I: Describes relationships including congruence of twodimensional geometric shapes (lines, angles, triangles) to make and test conjectures and solve problems. C-4.2: Proves theorems using Euclid's axioms and postulates for triangles and quadrilaterals and applies them to solve geometric problems. C-7.3: Proves theorems using Euclid's axioms and postulates for angles, triangles and quadrilateral, circles area related theorem for triangles and parallelogram.	Activity I (10 min) - The teacher distributes dot sheets to the children and ask them to quickly draw 2-D shapes - Teacher asks the following question: - How many 2 d shapes you have drawn? - Have you drawn triangles? - Can you now draw different kinds of triangles based on their sides and angles?		https://yo be/g9GxT4NY?si= UpS6x\|H: Uf77 5 min .1 TacLeaı video c Congrue of Triang

C-7.4: Constructs different geometrical shapes like bisectors of line segment, angles and their bisectors, triangles and other polygons satisfying given constraints.

Learning outcome:

Identifies

similarities and differences among different geometrical shapes

Analyses

similarities and differences between parts of shapes (lines, angles, triangles)

constructs

a triangle similar to a given triangle as per a given scale factor.

derives

proofs of mathematical statements particularly related to geometrical concepts, like parallel lines, triangles, quadrilaterals, circles,
etc., by applying axiomatic approach and solves

Activity 2 (5 min)

- Teacher draws figures of two non-congruent shapes.

-Are these figures same?
- Ask reason for their answers from the students
- Ask students to give some more examples

Activity $\mathbf{3}$ ($\mathbf{2 5} \mathbf{~ m i n}$)

- The teacher introduces the concept of congruency
- Shows students bangles of different sizes
- Teacher asks the following question:
- Pick out the identical bangles
- What is the difference between the identical and the non-identical bangles?
- How can you conclude that some of the bangles are identical?
- Teacher gives the definition of congruency.
- Figures with same size and shapes are called congruent figures
- List down some congruent body parts.
- List down some congruent objects in your classroom
- Are these figures congruent?
- Which of the sides are same?

Draw two congruent triangles on dot sheets.

Construct congruent triangles to the given measurements:
$A B=3 \mathrm{~cm}$

Summative assessment plan- only where relevant

Teachers' reflections and experiences:

I. How can I better manage the time allocated for each activity?
2. Did the students actively participate and show interest in the class?

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

(lines, angles, triangles) to make
and test conjectures and solve problems.

C-4.2: Proves theorems using Euclid's axioms and postulates for triangles and quadrilaterals and applies them to solve geometric problems.

C-7.3: Proves theorems using Euclid's axioms and postulates for angles, triangles and quadrilateral, circles area related theorem for triangles and parallelogram.

C-7.4: Constructs different geometrical shapes like bisectors of line segment, angles and their bisectors, triangles and other polygons satisfying given constraints.

Learning outcome:

Identifies

similarities and differences among different geometrical shapes

Analyses

similarities and differences between parts of shapes (lines, angles, triangles)

constructs

a triangle similar to a given
$\Delta \mathrm{DAO}$.

Teacher inquires the students to answer the following:

- Is $A D$ parallel to $B C$?
- Identify the sides which are equal?
- Are both plots congruent to each other?
- Can you say $\angle C O B=\angle D O A$? Justify?
- Can you say the angles are included in between the corresponding side?

Teacher gives the explanation with the definition: (5 min)

(SAS Congruence Rule)

Two triangles are congruent if two sides and the included angle of the one triangle are equal to two sides and the included angle of another triangle.

Teacher explains a problem for the clear understanding of congruence rule:
$A B C D$ is a quadrilateral in which $A D=B C$ and $\angle \mathrm{DAB}=\angle C B A$ prove that (i) $\triangle \mathrm{ABD} \cong \triangle \mathrm{BAC}$
(ii) $\mathrm{BD}=\mathrm{AC}$
(iii) $\angle A B D=\angle B A C$
(20 Min)

Ask them to draw both triangles separately

What are the corresponding parts of the triangles of $\triangle \mathrm{ABD}$ and $\triangle \mathrm{BAC}$

https:/ly
u.be/7Zv
naNFEs?
ture $=$ sh

Summative assessment plan- only where relevant

Teachers' reflections and experiences:

I. Did I encourage self-reflection and meta cognition among the students?
2. How well did I manage the class room during the period?

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

$\text { Class: } 9^{\text {th }}$ Total no. of periods fo Sub Topic: ASA Congr	Subject: Mathematics this chapter: 10 Pe uency Rule	Chapter: Triangles	
Learning Outcomes \& Indicators/microcompetencies	Teaching-Learning Process This should include activities to facilitate learning along with broad time duration	Pointers for formative assessmentthis should include strategies that will be used to Check for Understanding - e.g., questions/worksheets/experiments lassignments/self-assessment checklists/etc.	Material required
4.I: Describes relationships including congruence of twodimensional geometric shapes (lines, angles, triangles) to make and test conjectures and solve problems. C-4.2: Proves theorems using Euclid's axioms and postulates for triangles and quadrilaterals and applies them to solve geometric problems. C-7.3: Proves theorems using Euclid's axioms and postulates for angles, triangles Learning outcome: Identifies similarities and differences	Teacher promotes discussion among peers on the following questions (15 min) Two friends bought a plot and thinking to divide into half. They buy a plot in shape of quadrilateral as shown image:	Write congruency criterions for triangles.	

among different geometrica shapes

Analyses

similarities and differences between parts of shapes (lines, angles, triangles)

constructs

a triangle similar to a given triangle as per a given scale factor.

derives

proofs of mathematical statements particularly related to geometrical concepts, like parallel lines, triangles, quadrilaterals, circles,
etc., by applying axiomatic
approach and solves problems using them.

- Seeing Image, can you say how they divided the plot?
- Is $\mathrm{BC}=\mathrm{BD}$? Justify
- State both plots have equal areas?
- What about the perimeters of the plots?(equal or not)
- Is $\triangle \mathrm{ABC}$ is congruent to $\triangle \mathrm{ABD}$

Teacher gives some more examples as an activity as a Recall.

Teacher will conduct the following activity.

If we place one triangle on the other triangle, do they cover one another completely?
What do you call those triangles?
The teacher introduces the topic showing the above activity the equality of two angles and included sides.

Theorem (ASA Congruence Rule)($\mathbf{2 5} \mathbf{~ m i n}$)

Two triangles are congruent if two angles and the included side of the triangle are equal to two angles and the included size of another triangle.

https://y u.be/bFl

UOLP
I?si=uVV
LkWgee
wdrr
5 min. 7
TacLea
video c
ASA
criteri

Summative assessment plan- only where relevant

Teachers' reflections and experiences:

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

Class: $9^{\text {th }}$ Total no. of periods for this chapter: 10 2. Sub Topic: AAS congruency rule	Subject: Mathematics	Chapter: Triangles	
	Period no :4/10		
Learning Outcomes \& Indicators/microcompetencies	Teaching-Learning Process This should include activities to facilitate learning along with broad time duration	Pointers for formative assessmentthis should include strategies that will be used to Check for Understanding - e.g., questions/worksheets/experiments /assignments/self-assessment checklists/etc.	Mater requir
C-4.I: Describes relationships including congruence of twodimensional geometric shapes (lines, angles, triangles) to make and test conjectures and solve problems. C-4.2: Proves theorems using Euclid's axioms and postulates for triangles and quadrilaterals and applies them to solve geometric problems. C-7.3: Proves theorems using Euclid's axioms and postulates for angles, triangles Learning outcome: Identifies	Teacher gives a situation as an activity and promotes discussion by dividing the whole class in to 4 peer groups Activity: (10 min) Sai and Mahesh bought two plots of Triangular Shape such that, one edge of both coincides with each other as shown in figure Based on the information teacher asked the following questions: I. Is both Triangular Plots are congruent or not? State (T/F) 'O' is midpoint of AD? 2. $A B \neq C D$ is T / F ?		\square https://y u.be/A5 14Ghr4I fUnxyZ\| ZZUsul 3 Min. TacLea Englis video c AAS criteri

similarities and differences among different geometrical shapes

Analyses

similarities and differences between parts of shapes (lines, angles, triangles)

constructs

a triangle similar to a given triangle as per a given scale factor.

derives

proofs of mathematical
statements particularly
related to geometrical
concepts, like parallel lines,
triangles, quadrilaterals,
circles,
etc., by applying axiomatic
approach and solves
problems using them.
3. $\mathrm{OC}=\mathrm{OD}$ is T / F ?
4. If both plots are congruent then by which criteria, they are congruent?
Proof
(20 min)

Teacher explains clearly by above situation as follows:
Since $\mathrm{AB} \| \mathrm{CD}, \mathrm{BC}$ is transversal line so $\angle O B A=\angle O C D$
(alternate interior angles) --------(I)
Given OA=OD
$\angle A O B=\angle C O D$
From I, 2, 3 the above triangles are congruent by AAS Congruency.
Teacher gives the statement of AAS Congruency
If two triangles have two equal angles and a side adjacent to only one of the angles that are equal, then the two triangles are congruent.
Teachers note: Teacher should ensure that students understand that, if the equal side is not included in between equal angles then also the given triangles are congruent by AAS Congruency rule.
Activity: (IOmins)
Teacher gives an activity to the whole class:
Teacher gives instruction to take them a sheet of paper and draw two triangles with given measurements

$$
\begin{aligned}
& \angle B=\angle Q=65^{\circ} \\
& \angle C=\angle R=50^{\circ}
\end{aligned}
$$

$\mathrm{AC}=\mathrm{PR}=7 \mathrm{~cm}$

Ask them to cut the two triangles with the above measurements and place on one another.
What do you observe?
I. $A D$ and $B C$ are equal perpendiculars to a line segment $A B$ show that $C D$ bisects $A B$.

Summative assessment plan- only where relevant

3. I and m are two parallel lines intersected by another pair of parallel lines p and q (see Fig. 7.19). Show that $\Delta A B C \cong \Delta C D A$.

Teachers' reflections and experience:

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

for triangles and
parallelogram.

C-7.4: Constructs different geometrical shapes like bisectors of line segment, angles and their bisectors, triangles and other polygons satisfying given constraints.

Learning outcome:
 \section*{Identifies}

similarities and differences among different geometrical shapes

Analyses

similarities and differences between parts of shapes (lines, angles, triangles)

constructs

a triangle similar to a given triangle as per a given scale factor.

derives

proofs of mathematical statements particularly

- What is the \perp lar bisector of BC ?
- $\mathrm{Is}=\angle \mathrm{CAD}$? why?
- What is the common side of $\triangle B A D, \triangle \mathrm{CAD}$?
- Which type of congruence it satisfies?

Teacher concludes that $\angle B A D=\angle C A D$ (By CPCT)

$$
\therefore \angle B=\angle C
$$

Activity:2

(10 min)
Teacher makes the class into 4 groups and ask the student of each group

- Construct a $\triangle \mathrm{ABC}$

With $B C$ of any length and $\angle B=\angle C=50^{\circ}$

- Draw a bisector of $\angle A$ and intersect $B C$ at D Teacher guides the children to cut out the triangle from the sheet and fold it along $A D$ to coincide B with C
- Does $\triangle A D B$ covers completely $\triangle A D C$
- Does it same for all the 4 groups
- What about the lengths of $A B$ and $A C$
- Are they equal or not
- If you open the folded part, what are the opposite angles of $A B$ and $A C$

Teacher draws a conclusion with the student answers that sides opposite to equal angles are equal (10 min)

Based on this activity observation let us derive the following theorem with the use of congruence of triangles:

In $\triangle A B C$, the bisector $A D$ of $\angle A$ is perpendicular to side $B C$. Show that $A B=A C$

Given an $\triangle A B C$ whose perimeter is 13 cm $\angle A B C=\angle A C B$ and length of side $B C=3 C M$ find the length of the side $A B$ and $A C$.

Before and after folding, Is the triangles similar
related to geometrical
concepts, like parallel lines,
triangles, quadrilaterals,
circles,
etc., by applying axiomatic
approach and solves
problems using them.
and $\triangle \mathbf{A B C}$ is Isosceles

Fig. 7.27

- Teacher ensures the student to draw figure using the statement
- Teacher guides the students if they are unable to do
- Teacher notifies that this result can be proved in many ways. One of the proofs is given as an activity
- Teacher concludes that angles opposites to equal
sides of an isosceles triangle are equal

Summative assessment plan- only where relevant

Teachers' reflections and experiences:

- Were there any disruptions or behavioural issues that I need to address?
- What strategies can I implement to improve classroom management?

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

Class: $9^{\text {th }}$ Total no. of periods Sub Topic: Problems	Subject: Mathematics his chapter: 10 Congruency criteria.	$\begin{aligned} & \text { Chapter: Triangles } \\ & \text { Period no: } 6 / 10 \end{aligned}$	
Learning Outcomes \& Indicators/microcompetencies	Teaching-Learning Process This should include activities to facilitate learning along with broad time duration	Pointers for formative assessmentthis should include strategies that will be used to Check for Understanding - e.g., questions/worksheets/experiments lassignments/self-assessment checklists/etc.	Mater requir
C-4.1: Describes relationships including congruence of twodimensional geometric shapes (lines, angles, triangles) to make and test conjectures and solve problems.	Teacher gives a question to the class and explain as follows (25 Minutes): I. ABC is a triangle in which altitudes BE and CF to sides $A C$ and $A B$ are equal (see Fig. 7.32). Show that (i) $\triangle A B E \cong \triangle A C F$ (ii) $A B=A C$, i.e., $A B C$ is an isosceles triangle. $\triangle A O B \cong$	(I5 Minutes) 1. $A B C$ is an isosceles triangle in which altitudes $B E$ and $C F$ are drawn to equal sides $A C$ and $A B$ respectively (see Fig. 7.31). Show that these altitudes are equal.	
C-4.2: Proves theorems using Euclid's axioms and postulates for triangles and quadrilaterals and applies them to solve geometric problems.			https:/ly u.be/4w! yl8IZ4?s LuCUB1 d2Askl 5 min video fri Focus C
C-7.3: Proves theorems using Euclid's axioms and	Teacher explains the problem by asking following questions:		on solvir proble relating it.

Summative assessment plan- only where relevant

Teachers' reflections and experiences:

I. How can I increase student engagement and create a more interactive learning environment?
2. How can I improve my assessment and feedback practices?

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

Class: $9^{\text {th }}$ Total no. of periods f Sub Topic: SAS Cong	Subject: Mathematics his chapter: 10	Chapter: Triangles Period no: 7/IO	
Learning Outcomes \& Indicators/microcompetencies	Teaching-Learning Process This should include activities to facilitate learning along with broad time duration	Pointers for formative assessmentthis should include strategies that will be used to Check for Understanding - e.g., questions/worksheets/experiments lassignments/self-assessment checklists/etc.	Mater requir
C-4.I: Describes relationships including congruence of twodimensional geometric shapes (lines, angles, triangles) to make and test conjectures and solve problems. C-4.2: Proves theorems using Euclid's axioms and postulates for triangles and quadrilaterals and applies them to solve geometric problems. C-7.3: Proves theorems using Euclid's axioms and postulates for angles, triangles Learning outcome: Identifies	Teacher promotes a discussion among students by showing a kite and asks the following (I5 Minutes) Name the 2D shapes you are observing from the kite? Teacher calls a student and gives some instructions - asks him to measure all the sides, and name the type of the quadrilateral. -cut the kite along one diagonal.		https:/ly u.be/Hu wSeAyC =7sHHu S83-a5 5 min. TacLea Englis video c SSS crit.

```
similarities and differences
among different geometrical shapes
```


Analyses

similarities and differences between parts of shapes (lines, angles, triangles)

constructs

a triangle similar to a given triangle as per a given scale factor.

derives

proofs of mathematical statements particularly related to geometrical concepts, like parallel lines, triangles, quadrilaterals, circles, etc., by applying axiomatic approach and solves problems using them.
-what are the shapes you observed after cutting?
-place the triangles on one another, does it overlap with each other?

Teachers note
(5 Mints): Teacher should ensure that, the students should come to know, the two triangles are overlapping with each other i.e., those are congruent.
(SSS congruence rule) : If three sides of one triangle are equal to the three sides of another triangle, then the two triangles are congruent.

Teacher gives a question related to topic(20 MINTS):

Two sides $A B$ and $B C$ and median $A M$ of one triangle
$A B C$ are respectively equal to sides $P Q$ and $Q R$ and median PN of D PQR. Show that:

(i) $\Delta \mathrm{ABM} \cong \Delta \mathrm{PQN}$

Teacher ask the students to read the problem and list out the given values

Are the two triangles shown in the above fig congruent?

| |
| :--- | :--- |
| |
| |

I. Consider the $\Delta \mathrm{ABM} \Delta$ QPN
2. Since $A M$ is the median drawn to the side $B C$ then express the length of $B M$ in terms of $B C(B M=B C / 2)$
3. PN is the median drawn to the side QR so express

QN in terms of $\mathrm{QR}(\mathrm{QN}=\mathrm{QR} / 2)$
4. Now $\ln \triangle A B M$ and $\triangle P Q N, A B=P Q, A M=P N$, $B M=Q N$

Now can you say that these two triangles are congruent by which criteria

Summative assessment plan- only where relevant

> In the given figure apply SSS Congruence prove that diagonal of the Rhombus bisects each other at Right angles

Teachers' reflections and experiences:

3. How can I increase student engagement and create a more interactive learning environment?
4. How can I improve my assessment and feedback practices?

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

Class: $9^{\text {th }}$ Total no. of periods fo Sub topic: RHS congr	Subject: Mathematics his chapter: 10 nce rule	Chapter: Triangles Period no: 8/IO	
Learning Outcomes \& Indicators/microcompetencies	Teaching-Learning Process This should include activities to facilitate learning along with broad time duration	Pointers for formative assessmentthis should include strategies that will be used to Check for Understanding - e.g., questions/worksheets/experiments /assignments/self-assessment checklists/etc.	Mater requir
C-4.I: Describes relationships including congruence of twodimensional geometric shapes (lines, angles, triangles) to make and test conjectures and solve problems.	Teacher will recollect the previous knowledge from students: I. If 2 sides and included angle of one triangle are equal to 2 sides and included angle of the other triangle then which type of congruence is it? 2.		
C-4.2: Proves theorems using Euclid's axioms and postulates for triangles and quadrilaterals and applies them to solve geometric problems.			https:/ly u.be/V2i 7VQ g?si= NwQitE UOGv
C-7.3: Proves theorems using Euclid's axioms and	Above triangles follows which congruency?		

postulates for angles,
triangles and quadrilateral,
circles area related theorem
for triangles and
parallelogram.
C-7.4: Constructs different geometrical shapes like bisectors of line segment, angles and their bisectors, triangles and other polygons satisfying given constraints

Learning outcome:

Identifies

similarities and differences among different geometrical shapes

Analyses

similarities and differences between parts of shapes (lines, angles, triangles)

constructs

a triangle similar to a given triangle as per a given scale factor.

derives

proofs of mathematical

Theorem:

In two right angled triangles, if the length of the hypotenuse and one side of the one triangle is equal to the length of the hypotenuse and corresponding side of the other triangles are congruent.

Teacher asks the following questions:
I. What does RHS stands for?
2. Can you draw 2 triangles of one equal side and equal hypotenuse?

Teacher explains CPCT rule according o this topic and asks them to take only $\triangle P A C$ and $\triangle \mathrm{PBC}$.
Tacher asks the questions:
I. Which side is the common for both triangles?
2. Is $\angle \mathrm{APC}=\angle \mathrm{BPC}$ true or not?
3. What do you observe. Are any congruency criteria coming?

Teacher explains the concept by the drawing a figure and pointed vertices, sides.

Teacher asks the questions to students by showing a figure.

I. Which sides are correspondent and is any corresponding there?
2. Can you give symbolically congruency of $\triangle P A C$ and $\triangle \mathrm{PBC}$.

https:/ly
u.be/F2n
hizQc?si
b9 4Brd
2M8p
explanat
s
congrue
rules
Video
from dig guru

Summative assessment plan- only where relevant

> P is a point equidistant from two lines I and m intersecting at point A . Show that the line AP bisects the angle between them.

Teachers' reflections and experiences:

I. Was the pacing of the lesson appropriate?
2. Did I cover all the planned content without rushing or leaving gaps?

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

Class: $9^{\text {th }}$ Subject: Mathematics Total no. of periods for this chapter: 10 Sub Topic: Case Study Questions		Chapter: Triangles Period no: 9/IO	
Learning Outcomes \& Indicators/microcompetencies	Teaching-Learning Process This should include activities to facilitate learning along with broad time duration	Pointers for formative assessment- this should include strategies that will be used to Check for Understanding - e.g., questions/worksheets/experiments/assignm ents/self-assessment checklists/etc.	Material required
C-4.I: Describes relationships including congruence of twodimensional geometric shapes (lines, angles, triangles) to make and test conjectures and solve problems. C-4.2: Proves theorems using Euclid's axioms and postulates for triangles and quadrilaterals and applies them to solve geometric problems. C-7.3: Proves theorems using Euclid's axioms and postulates for angles, triangles and quadrilateral, circles area related theorem for triangles and parallelogram. C-7.4: Constructs different geometrical shapes like bisectors of line segment, angles and their bisectors,	I. "If three sides of one triangle are equal to three sides of the other triangle, then the two triangles are congruent" is a \qquad (a) SSS congruence rule (b) ASA congruence rule (c) RHS congruence rule (d) AAS congruence rule 2. The sum of any two sides of a triangle is \qquad than the third side. (a) Lesser (b) Greater (c) Equal (d) None of the above 3. Two squares of the same sides are \qquad (a) Not congruent (b) Congruent (c) Both (a) and (b) (d) None of the above 4. Sides opposite to equal angles of a triangle are \qquad . (a) Smaller (b) Greater (c) Equal (d) None of the above 5. "If in two right triangles, hypotenuse and one side of a triangle are equal to the		

triangles and other polygons satisfying given constraints. Learning outcome: Identifies similarities and differences among different geometrical shapes Analyses similarities and differences between parts of shapes (lines, angles, triangles) constructs a triangle similar to a given triangle as per a given scale factor. derives proofs of mathematical statements particularly related to geometrical concepts, like parallel lines, triangles, quadrilaterals, circles, etc., by applying axiomatic approach and solves problems using them.	hypotenuse and one side of other triangle, then the two triangles are congruent" is a \qquad (a) SSS congruence rule (b) ASA congruence rule (c) RHS congruence rule (d) AAS congruence rule 6. In a triangle, angle opposite to the longer side is \qquad (a) Equal (b) Smaller (c) Larger (d) None of the above 7. Two figures are congruent, if they are of the \qquad shape and of the \qquad size. (a) Same, Different (b) Same, Same (c) Different, Same (d) Different, Different 8. Two circles of the \qquad radii are congruent. (a) Same (b) Different (c) Unequal (d) None of the above 9. If two triangles $A B C$ and $P Q R$ are congruent under the correspondence $A \leftrightarrow P$, $B \leftrightarrow Q$ and $C \leftrightarrow R$, then symbolically, it is expressed as \qquad (a) $\Delta \mathrm{ACB} \cong \overline{\mathrm{PQR}}$ (b) $\Delta \mathrm{ABC} \cong \Delta \mathrm{PQR}$ (c) Δ $A B C \cong \triangle P R Q$ (d) None of the above 10. "If two sides and the included angle of one triangle are equal to two sides and the included angle of the other triangle, then the two triangles are congruent" is a \qquad (a) SSS congruence rule (b) SAS congruence rule (c) RHS congruence rule (d) None of the above

Summative assessment plan- only where relevant

Teachers' reflections and experiences:

I. Did the students actively participate and show interest in the lesson?
2. How can I increase student engagement and create a more interactive learning
3. environment?

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

Class: $9^{\text {th }}$ Subject: Mathematics Total no. of periods for this chapter: 10 Sub Topic: Case Study Questions		$\begin{aligned} & \text { Chapter: Triangles } \\ & \text { Period no: } 10 / 10 \end{aligned}$	
Learning Outcomes \& Indicators/microcompetencies	Teaching-Learning Process This should include activities to facilitate learning along with broad time duration	Pointers for formative assessmentthis should include strategies that will be used to Check for Understanding - e.g., questions/worksheets/experiments lassignments/self-assessment checklists/etc.	Material required
C-4.I: Describes relationships including congruence of twodimensional geometric shapes (lines, angles, triangles) to make and test conjectures and solve problems. C-4.2: Proves theorems using Euclid's axioms and postulates for triangles and quadrilaterals and applies them to solve geometric problems. C-7.3: Proves theorems using Euclid's axioms and postulates for angles, triangles and quadrilateral, circles area related theorem for triangles and parallelogram.	I. In a park, there are two triangular flower beds. Flower bed $A B C$ has sides $A B=8 \mathrm{~cm}, B C=6 \mathrm{~cm}$, and $C A=10 \mathrm{~cm}$. Flower bed PQR has sides $\mathrm{PQ}=$ $8 \mathrm{~cm}, Q R=10 \mathrm{~cm}$, and $R P=6 \mathrm{~cm}$. Justify you answer that the flower bed $A B C$ is congruent to flower be PQR? a) If angle $A=40^{\circ}$ and angle $B=60^{\circ}$ in flower bed $A B C$, what is the measure of angle C ? b) If angle $\mathrm{P}=50^{\circ}$ and angle $\mathrm{Q}=70^{\circ}$ in flower be $P Q R$, what is the measure of angle R ? c) Suppose flower $A B C$ is shifted to a new location within the park without changing its shape or size. In this new location, is flower bed ABC congruent its original position? Why or why not? d) If angle $P=500$ and angle $Q=700$ in flower bed $P Q R$, what is the measure of angle R ? 2. In the two triangles $A B C$ and $D E F, A B=D E$ and $A C=E F$. Name two angles from the two triangles that must be equal so that the two triangles are congruent. Give reason for your answer		

C-7.4: Constructs different geometrical shapes like bisectors of line segment, angles and their bisectors, triangles and other polygons satisfying given constraints.

Learning outcome:

Identifies

similarities and differences among different geometrical shapes

Analyses

similarities and differences between parts of shapes (lines, angles, triangles)

constructs

a triangle similar to a given triangle as per a given scale factor.
3. In triangles ABC and $\mathrm{DEF}, \angle \mathrm{A}=\angle \mathrm{D}, \angle \mathrm{B}=\angle \mathrm{E}$ and $A B=E F$. Will the two triangles be congruent? Give reasons for your answer.
4. M is a point on side $B C$ of a triangle $A B C$ such that $A M$ is the bisector of $\angle B A C$. Is it true to say that perimeter of the triangle is greater than 2 AM? Give reason for your answer.
5. In triangles $A B C$ and $P Q R, \angle A=\angle Q$ and $\angle B=\angle R$. Which side of $\triangle \mathrm{PQR}$ should be equal to side $B C$ of $\triangle A B C$ so that the two triangles are congruent? Give reason for your answer.

Summative assessment plan- only where relevant

Teachers' reflections and experiences:

I. How can I use student work as a valuable source of information for my teaching?
2. Did I effectively utilize formative assessments to monitor student progress and adjust instruction accordingly?

Word Problems on Congruent Triangles Worksheet

1
For each of these given sets of triangles, state the rule that tells you that they are congruent. Find the unknown values.

b)

$\times=$ \qquad ,$Y=$ \qquad $\angle O Q R=$ \qquad $. \angle Q R O=$ \qquad
2
Which of these pairs of triangles are similar? For the pairs that are similar, give

b)

3
Solve for x in the given figures
a) Given $\triangle A B D \sim \triangle C B D$

b) Given $\triangle A \times Z \sim \triangle S Y Z$

WORK SHEET 2

Congruence Statements

A) Complete each congruence statement.

1) $\triangle \mathrm{DEF} \cong \Delta Y X Z$
$\overline{E F} \underline{\underline{n}}$ \qquad
2) $\Delta \mathrm{ABC} \cong \Delta \mathrm{FGH}$
$\angle F \cong$ \qquad
3) $\triangle \mathrm{L} M \mathrm{~N} \cong \triangle \mathrm{PQQ}$
$\angle M \cong$
4) $\Delta S T U \cong \Delta X Y Z$
$\overline{\mathrm{ST}} \xlongequal{\jmath}$
B) Complete each congruence statement.
5)

6)

$\angle Q \cong$ \qquad

WORK SHEET 3

I. Which of the following is not a criterion for congruence of triangles?
(A) SAS (B) ASA (C) SSA (D) SSS
2. If $A B=Q R, B C=P R$ and $C A=P Q$, then
(A) $\Delta \mathrm{ABC} \cong \Delta \mathrm{PQR}(\mathrm{B}) \Delta \mathrm{CBA} \cong \Delta \mathrm{PRQ}(\mathrm{C}) \Delta \mathrm{BAC} \cong \Delta \mathrm{RPQ}$ (D) $\Delta \mathrm{PQR} \cong \Delta \mathrm{BCA}$
3. In $\triangle A B C, A B=A C$ and $\angle B=50^{\circ}$. Then $\angle C$ is equal to
(A) 40° (B) 50° (C) 80° (D) 130°
4. In $\triangle A B C, B C=A B$ and $\angle B=80^{\circ}$. Then $\angle A$ is equal to
(A) 80° (B) 40° (C) 50° (D) 100°
5. In $\triangle \mathrm{PQR}, \angle \mathrm{R}=\angle \mathrm{P}$ and $\mathrm{QR}=4 \mathrm{~cm}$ and $\mathrm{PR}=5 \mathrm{~cm}$. Then the length of PQ is
(A) 4 cm (B) 5 cm (C) 2 cm (D) 2.5 cm

QUADRILATERALS

Chapter 8

Period plan (40 mins class)

Chapter Plan / Unit Plan / Lesson Plan

Introduction: The following curricular goals and competencies will be developed through this chapter.

CURRICULAR GOALS	COMPETENCIES
CG-4: Analysis characteristics and properties of two-dimensional	C-4.I: Describes relationships including congruence of two-
geometric shapes and develops mathematical arguments to	dimensional geometric shapes (such as the lines angles triangle:
explain geometric relationships	to make and test conjectures and solve problems
CG-7: Begins to perceive and appreciate the axiomatic and	C-7.3: Proves theorems using Euclid's axioms and postulates -
deductive structure of Mathematics.	for angles, triangle, quadrilaterals, circles, area-related theorem
	for triangles and parallelograms.

MIND MAP

PERIOD WISE PLAN		
PERIOD	TEACHING TOPICS	LEARNING OUTCOMES
LP IIntroduction Theorem 8.1	A diagonal of parallelogram divides it in to two Congruent Triangles	Derives proofs of mathematical statements particularly related to geometrical concepts, like parallel lines, triangles, quadrilaterals, circles, etc., by applying axiomatic approach and solves problems using them.
LP 2 Theorem 8.2 Theorem 8.3	> In a Parallelogram opposite sides are equal. $>$ Converse of the above Theorem.	Derives proofs of mathematical statements particularly related to geometrical concepts, like parallel lines, triangles, quadrilaterals, circles, etc., by applying axiomatic approach and solves problems using them.
LP 3 Theorem 8.4 Theorem 8.5	In a parallelogram opposite angles are equal Converse of the above Theorem.	Derives proofs of mathematical statements particularly related to geometrical concepts, like parallel lines, triangles, quadrilaterals, circles, etc., by applying axiomatic approach and solves problems using them.
LP 4 Theorem 8.6 Theorem 8.7	The diagonals of a parallelogram bisect each other Converse of the above Theorem.	Derives proofs of mathematical statements particularly related to geometrical concepts, like parallel lines, triangles, quadrilaterals, circles, etc., by applying axiomatic approach and solves problems using them.
LP 5 Example Problems	$>$ Example 2	Identifies similarities and differences among different geometrical shapes
LP 6 Example Problems	$>$ Example 3	Identifies similarities and differences

| | | among different geometrical shapes |
| :--- | :--- | :--- | :--- |
| LP 7 Example Problems | $>$ Example 4 | Identifies similarities and differences
 among different geometrical shapes |
| LP 8 Practice Period | $>$ Problems from exercise 8.1 | Enable learners to learn to think critically
 and solve problems, and use a
 multidisciplinary perspective |
| LP 9 Theorem 8.8 Mid-point Theorem | Derives proofs of mathematical
 statements particularly related to
 geometrical concepts, like parallel lines,
 triangles, quadrilaterals, circles, etc., by
 applying axiomatic approach and solves
 problems using them. | |
| LP IO Theorem 8.9 | $>$ Converse of Mid-point Theorem | Derives proofs of mathematical
 statements particularly related to
 geometrical concepts, like parallel lines,
 triangles, quadrilaterals, circles, etc., by
 applying axiomatic approach and solves
 problems using them. |
| LP II Practice Period | $>$ Problems from exercise 8.2 | Enable learners to learn to think critically
 and solve problems, and use a
 multidisciplinary perspective |

Class: $9^{\text {th }}$ Total no. of periods f Key concepts: Proper	Subject: Mathematics this chapter: I I Period no : / I I	Chapter: Quadrilaterals	
Learning Outcomes \& Indicators/microcompetencies	Teaching-Learning Process This should include activities to facilitate learning along with broad time duration	Pointers for formative assessmentthis should include strategies that will be used to Check for Understanding - e.g., questions/worksheets/experiments /assignments/self-assessment checklists/etc.	Mater requir
The student will be able to learn that the diagonal of a parallelogram divides it into two congruent triangles Learning outcome: Derives proofs of mathematical statements particularly related to geometrical concepts, like parallel lines, triangles, quadrilaterals, circles, etc., by applying axiomatic approach and solves problems using them.	Teacher asks the following question and recaps the previous knowledge:10 MINUTES 1. Observe the window in your class room and describe its shape. 2. Take two identical set squares from your geometry boxes and arrange them as shown here. Identify the parallel sides in it. This also has opposite sides parallel and equal. Is it a rectangle? No, It's a		Propertie: Parallelog $\frac{\text { https://you }}{\text { /Gso- }}$ pSljQ4g?si=x DYt_PazOj SOURCE::htt m/@byjuscl

Summative assessment plan- only where relevant
Teachers' reflections and experiences:
$>$ Did the lesson plan align with the curricular goals and competencies? if not how could be adjusted for better alignment?
$>$ How well did the pedagogical strategies engage students and promote active participation in the learning process?
$>$ How effective were the materials and resources used in this lesson?
$>$ How well did the assessment strategies measure student understanding and achievement of the learning outcomes?

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

them.	4. to place one triangle over the other and turn around, if needed, and say whether they overlap in any case!Children recap that $\Delta \mathrm{ABC} \cong \triangle \mathrm{CDA}$. Let us identify the sides of the two triangles which overlap with each other. Teacher gets the response from the students about different pairs of sides, if not, teacher guides them to get it. And teacher conveys that such sides are called corresponding sides and are equal as they coincide. In this case the teacher gives emphasis on $A B=C D$ and $B C=A D$. The teacher concludes that the opposite sides of a parallelogram are equal. triangles. ACTIVITY 2: 5 MINUTES Teacher asks the students (in groups): 1. to take two identical pens and two identical pencils and arrange them to form a quadrilateral with equal opposite sides. 2. to identify the shape of the quadrilateral	I. In parallelogram $A B C D, A B=$ 6 cm and $B C=4 \mathrm{~cm}$. Find its perimeter. 2. In parallelogram $A B C D, A B=$ $(x+4) \mathrm{cm}$ and $C D=(2 x-2) \mathrm{cm}$, then find x.	/5fuSjobEwCl?si= r0vwCPUEB5093e bY SOURCE::https:// www.youtube.co m/@DeltaStep Live objects present in the class room. Paper and other stationary. Pens and Pencils etc.

	angles of the two congruent triangles may be helpful here. 6. Teacher asks children to identify the pairs of corresponding angles in the two triangles. Children respond $\angle \mathrm{BAC}=\angle \mathrm{DCA}$ and $\angle \mathrm{DAC}=\angle \mathrm{BCA}$ and $\angle \mathrm{D}=\angle \mathrm{B}$. Teacher may guide the students to arrive at these results. 7. Teacher asks the children to identify the pairs of equal angles obtained that may be helpful in proving $\mathrm{AB} / / \mathrm{CD}$ and $B C / / A D$. Student responds that $\angle \mathrm{BAC}=\angle \mathrm{DCA}$ implies $\mathrm{AB} / / \mathrm{CD}$ and $\angle \mathrm{DAC}=\angle \mathrm{BCA}$ implies $\mathrm{BC} / / \mathrm{AD}$, due to equality of alternate interior angles. Teacher helps students getting these results if needed. 8. Teacher asks the children whether the goal is reached! Children responds that, yes, the quadrilateral is parallelogram now, as the opposite sides are proven to be parallel lines. The teacher concludes that a quadrilateral with opposite sides equal is a parallelogram.		
	Summative assessment plan- only	here relevant	

Teachers' reflections and experiences:
$>$ Did the lesson plan align with the curricular goals and competencies? if not how could be adjusted for better alignment?
$>$ How well did the pedagogical strategies engage students and promote active participation in the learning process?
$>$ How effective were the materials and resources used in this lesson?
$>$ How well did the assessment strategies measure student understanding and achievement of the learning outcomes?

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

| | the theorem 8.4. (Teacher Note: Teacher should
 ensure that student is able to state the converse
 statement).
 Now, Teacher explains the given theorem, by
 asking some questions through the following
 activity.
 ACTIVITY 2
 1. Teacher asks the students to form a
 quadrilateral with 4 pens or pencils such
 that both pairs of opposite angles are equal
 (students may seek the help of protractor
 to measure the angles). |
| :--- | :--- | :--- | :--- |
| 2. Teacher asks to identify the type of
 quadrilateral formed? (Teacher Note:
 Teacher should ensure that the children
 arrive at the conclusion of parallelogram by
 adding up the adjacent angle measures and
 seeing it as 180 ${ }^{\circ}$. | |
| Children identify it as a parallelogram.
 Proof of Theorem - 8.5
 Teacher asks the students to draw a quadrilateral
 and label it as ABCD and consider that its opposite
 angles are known to be equal. | |

| | Teacher should ask students to identify if
 this helps to prove opposite sides parallel to
 each other. (Teacher Note: Teacher should
 ensure that students arrive at the conclusion
 of AB//CD and BC//AD using angle
 properties by transversals).
 Teacher concludes that the quadrilateral
 with both pairs of opposite angles equal is a
 parallelogram. | |
| :--- | :--- | :--- | :--- |
| Summative assessment plan- only where relevant | | |
| I. Show that each angle of a rectangle is a right angle. | | |

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

Class: $9^{\text {th }}$	Subject. Mathema	Chapter: Quadrilaterals	
Total no. of periods for this chapter:II Period		no: 4	
Theorem 8.7 - If the diagonals of a quadrilateral bisect each other then it is a parallelogram			
Learning Outcomes \& Indicators/microcompetencies	Teaching-Learning Process This should include activities to facilitate learning along with broad time duration	Pointers for formative assessmentthis should include strategies that will be used to Check for Understanding - e.g., questions/worksheets/experiments lassignments/self-assessment checklists/etc.	Mater requir
The student will be able to learn that diagonals of a parallelogram bisect each other and converse. Learning outcome: Derives proofs of mathematical statements particularly related to geometrical concepts, like parallel lines, triangles, quadrilaterals, circles, etc., by applying axiomatic approach and solves problems using them.	Teacher asks the following questions to recall the previous knowledge of students relevant to the topic: 10 MINUTES 1. Teacher draws a parallelogram with diagonals on IFP / Green Board and says that it is a parallelogram with two diagonals. Do they have any common point? (Teacher Note: Teacher should ensure that students recall that there is one common point called Intersecting Point.) 2. Teacher asks the children to observe the figure shown and asks what are the	I. How many points of intersection do the diagonals of a parallelogram have? 2. What are the different congruence criterion for testing	

3. In parallelogram $A B C D$, diagonals are bisecting at the point O. Prove that $\triangle \mathrm{AOD} \cong \triangle \mathrm{COB}$.

	Teacher asks the students to find what may help in proving it. (Teacher Notes: Teacher has to ensure that student identifies opposite triangles are congruent as this would only help them in proving the result.)
	Teacher asks the students about the known relations between the opposite triangles which may help them prove congruent, say, in \triangle AOB and \triangle COD, what sides or angles are equal? Student should identify that AB=CD (Opposite sides of a parallelogram are equal), \angle OAB= \angle OCD and \angle OBA= \angle ODC (alternate interior angles are equal) (teacher may guide if needed) and applies ASA congruency to establish that $\triangle A O B \cong \triangle C O D$. Teacher asks, how this helps in getting the result. Students respond that the
corresponding sides in these triangles are	
equal and that is our result (with teacher's	
assistance, if needed).	
Teacher concludes that, yes, OA=OC and	
OB=OD. So, the diagonals of a parallelogram	
bisect each other.	

Summative assessment plan- only where relevant

2. Show that each angle of a rectangle is a right angle.

Teachers' reflections and experiences:

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)
Ilass: $9^{\text {th }}$ Subject: Mathematics \quad Period no :5/II
Cotal no. of periods for this chapter: I I
Sub Topic: Example 2
.earning Outcomes \& ndicators/microompetencies
he students will be able o learn. The diagonals of Rhombus are erpendicular to each ther.
--4.I: Describes elationships including ongruence of twoimensional geometric hapes (such as the lines ngles triangles) to make nd test conjectures and olve problems earning outcome: Jentifies similarities and ifferences among ifferent geometrical hapes This should include activities to facilitate Mater learning along with broad time duration 20 MINUTES
Teacher asks the following questions and testing
the previous knowledge

1. If a parallelogram had two pairs of adjacent side are qual? Then which type of Quadrilateral it is?
2. How are the angles in a Rhombus?
3. Can you say that a Rhombus is a parallelogram?
4. How are the diagonals in a parallelogram? Teacher will explain Example 2 in the text book and analyze it:

27

Example 2:

Show that the diagonals of a Rhombus are perpendicular to each other.

- If $A B C D$ is a Rhombus.
- Can you say relation between the sides in a Rhombus?
- In $\triangle A O D$ and $\triangle D O C$, Which sides are equal?
- If $A D=C E, A O=O C, O D=O D$, what can you say about $\triangle A O D$ and $\triangle D O C$ are they congruent?
- Then how is the measure of $\angle D O A$ and $\angle D O C$?
- Are they equal?
- From figure what is the measure of $\angle D O A+\angle D O C$?
- What is the condition involved in it?
- If the sum of two angles

	$\angle A O D+\angle D O C=180^{\circ}$ then - What is the measure of each angle? - The students will give the answer the measure of each angle is 90° - The teacher will give the conclusion, the diagonals of a Rhombus perpendicular to each other.		
Summative assessment plan- only where relevant			

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

Class: $9^{\text {th }}$ Total no. of periods for th Sub Topic:Example 3: AB 2) ABCD is a parallelogra Indicators/micro- competencies C-4.1: Describes relationships including congruence of twodimensional geometric shapes (such as the lines angles triangles) to make and test conjectures and solve problems C-4.2: Proves theorems using Euclid's axioms and postulates for triangles and quadrilaterals, and applies them to solve geometric problems Learning outcome: Identifies similarities and differences among different geometrical shapes	Subject: Mathematics chapter:11 Period no:6 is an Isosceles triangle, in which AB=AC, bise	terior angle PAC and CD//AB. S.T	$=\angle \boldsymbol{E}$
	Teaching-Learning Process This should include activities to facilitate learning along with broad time duration	Pointers for formative assessment- this should include strategies that will be used to Check for Understanding - e.g., questions/worksheets/experiments/as signments/self-assessment checklists/etc.	Materi requir
	Teacher elicits the previous knowledge of the students by asking. 10 MINUTES 1. In $\triangle P Q R$ if $\angle Q=\angle R$ then give the relation of PQ and QR . Example 3:30 MINUTES $A B C$ is an Isosceles triangle in which $A B=A C$. $A D$ bisects exterior angle PAC and CD//AB. Show that (i) $\angle D A C=\angle B C A$ and (ii) $A B C D$ is a parallelogram. Teacher will explain the following example by asking some questions. 1. Given $\triangle A B C$ is an Isosceles triangle where $A B=A C$ then how can you prove that $\angle D A C=\angle A C B$	In the above figure if $P Q=P R$ and the measure of $\mathrm{QR}=5 \mathrm{~cm}$ and PS bisect $\angle T P R$ then find the measure of PS and $\angle S$.	

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

Class: ${ }^{\text {th }}$	Subject: Mathematics	Chapter: Quadrilaterals		
Total no. of periods for Sub Topic: Exampl 1) $\angle D A C=\angle B C A$ 2) $A B C$	chapter:11 Period no: 7 $A B C$ is an Isosceles triangle, in which $A B=A D$ a parallelogram.		w that	
Learning Outcomes \& Indicators/microcompetencies	Teaching-Learning Process This should include activities to facilitate learning along with broad time duration	Pointers for formative assessment- this should include strategies that will be used to Check for Understanding - e.g., questions/worksheets/experiments/as signments/self-assessment checklists/etc.	Materi requirı	
C-4.1: Describes relationships including congruence of twodimensional geometric shapes (such as the lines angles triangles) to make and test conjectures and solve problems C-4.2: Proves theorems using Euclid's axioms and postulates for triangles and quadrilaterals, and applies them to solve geometric problems Learning outcome: Identifies similarities and differences among different geometrical shapes	Teacher asks the following questions and testing the previous knowledge of the students. 5 MINUTES 1. In the given figure If $P Q \\| R S$ and ' 1 ' is a transversal then identify the relationship between $\angle P A B$ and $\angle A B S$? 2. In a parallelogram if one angle is 90° then which type of quadrilateral is it? Example 3:35 MINUTES Two parallel lines ' 1 ' and ' m ' are intersected by a transversal ' p '. Show that the quadrilateral formed by the bisectors of interior angles is a rectangle.		utu.be/ WzNR4C 8? $\mathrm{si}=\mathrm{i} 2$ OAOq8 8Dv 3 min Doubtr videc regardi problen isoscel triang: Propert of	

Summative assessment plan- only where relevant

1. In Parallelogram $A B C D$ two points P and Q are taken on diagonal $B D$ such that $D P=B Q$. Show that

(i) $\triangle A P D \cong \triangle C Q B$
(ii) $\mathrm{AP}=\mathrm{CQ}$
(iii) $\triangle A Q B=\triangle C A B$
(iv) $A Q=C P$
(v) APCQ is a Parallelogram

Teachers' reflections and experiences:

$>$ Did the lesson plan align with the curricular goals and competencies? if not how could be adjusted for better alignment?
$>$ How well did the pedagogical strategies engage students and promote active participation in the learning process?
$>$ How effective were the materials and resources used in this lesson?
$>$ How well did the assessment strategies measure student understanding and achievement of the learning outcomes?

Chapter Plan (Unit plan/lesson plan)Period plan (40 mins class)

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

Class: ${ }^{\text {th }}$ Total no. of periods Sub Topic: Theorem side	Subject: Mathematic s chapter: I I The line segment joining the mid-point	Chapter: 8 quadrila no: 9/II wo sides of a triangle is parallel to	als third
Learning Outcomes \& Indicators/microcompetencies	Teaching-Learning Process This should include activities to facilitate learning along with broad time duration	Pointers for formative assessment- this should include strategies that will be used to Check for Understanding - e.g., questions/worksheets/experiments/as signments/self-assessment checklists/etc.	Material required

C-4.2: Proves theorems using Euclid's axioms and postulates for triangles and quadrilaterals, and applies them to solve geometric problems C-7.3: Proves theorems using Euclid's axioms and postulates - for angles, triangle, quadrilaterals, circles, area-related theorems for triangles and parallelograms Learning outcomes: Derives proofs of mathematical statements particularly related to geometrical concepts, like parallel lines, triangles, quadrilaterals, circles, etc., by applying axiomatic approach and solves problems using them.	Teacher recollects the previous knowledge about the properties of triangles. Quadrilaterals and transversal. Activity: 10 MINUTES Teacher asks the students to take a sheet of paper and draw a triangle. Now make the mid points of the triangle and join them Students measure the length of the EF and $B C$ with the help of the scale Teacher asks students to measure the angle, $\angle \mathrm{E}$ and $\angle \mathrm{B}$ with help of the protractor after completion of measurement of sides EF and BC and angle $\angle E, \angle B$	(iii) (iv)	$A B C D$ is a rectangle in which diagonal AC bisects $\angle A$ as well as $\angle C$. Show that (i) $A B C D$ is a square. Diagonal BD bisects $\angle B$ as well as $\angle D$	$\xrightarrow[{\text { be/0a8cc]! }}]{\text { https:/lyo }}$ R0?si=4xel 27A2XII: CREAT CLASSE line segm joining tl two sides Triangle third sid

Students observe that

$\mathrm{EF}=1 \backslash 2 \mathrm{BC}$ and $\mathrm{an} \xi \angle \mathrm{AEF}=\angle \mathrm{ABC}$
(Teacher's note: Teacher has to ensure that student identifies that $\angle \mathrm{E}$ and $\angle \mathrm{B}$ are on the same side of the line AB and the measure is equal so such type of angles is called corresponding angles and the lines are parallel) Teacher concludes that EF//BC

Teacher asks the student repeat the same activity with some more triangles ad give the answer weather it is applicable for all the triangles THEOREM $8.8 \quad 30$ MINUTES

The line segment joining the mid points of two sides of a triangle is parallel to the third side

A

E
F
D

Teachers' reflections and experiences:
> Did the lesson plan align with the curricular goals and competencies? if not how could be adjusted for better alignment?
$>$ How well did the pedagogical strategies engage students and promote active participation in the learning process?
> How effective were the materials and resources used in this lesson?
$>$ How well did the assessment strategies measure student understanding and achievement of the learning outcomes?

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

particularly related to geometrical concepts, like parallel lines, triangles, quadrilaterals, circles, etc., by applying axiomatic approach and solves problems using them.	AF = FC Teacher concludes that the line EF bisects $A C$
THEOREM 8.9 : The line drawn through the mid-point of one side of triangle Parallel to another side bisects the third side I. Teacher will explain the proof of this theorem by asking questions and supplying necessary inputs	

P and Q are the mid-points of the opposite
sides $A B$ and $C D$ of a parallelogram $A B C D . A Q$ intersects $D P$ at Sand $B Q$ intersects CP at R. Show that PQRS is a parallelogram.
$A B C D$ is a square. E, F, G and H are points on $A B, B C, C D$ and $D A$ respectively, such that $A E=B F$ $=C G=D H$. Prove that $E F G H$ is a square.

Summative assessment plan-only where relevant

In a parallelogram $A B C D, E$ and F are the mid-points of sides $A B$ and $C D$ respectively (see Fig. 8.22). Show that the line segments $A F$ and $E C$ trisect the diagonal BD.
AI
Fig. 8.22

6. $A B C$ is a triangle right angled at C. A line through the mid-point M of hypotenuse $A B$ and parallel to BC intersects AC at D. Show that
(i) Dis the mid-point of AC
(ii) $M D \perp A C$

Teachers' reflections and experiences:
$>$ Did the lesson plan align with the curricular goals and competencies? if not how could be adjusted for better alignment?
$>$ How well did the pedagogical strategies engage students and promote active participation in the learning process?
$>$ How effective were the materials and resources used in this lesson?
$>$ How well did the assessment strategies measure student understanding and achievement of the learning outcomes?

Chapter Plan (Unit plan/lesson plan)Period plan (40 mins class)

Class: $9^{\text {th }}$ Total no. of periods for this chapter:11 Sub Topic: \quad Practice period based	Subject: Mathematics Period no: 11 Thenter:11 od based on the Mid - point Theorem and Converse of	Chapter: Quadrilaterals	
Learning Outcomes \& Indicators/microcompetencies	Teaching-Learning Process This should include activities to facilitate learning along with broad time duration	Pointers for formative assessment- this should include strategies that will be used to Check for Understanding - e.g., questions/worksheets/experiments/assignme nts/self-assessment checklists/etc.	Materi requirt
C-4.1: Describes relationships including congruence of twodimensional geometric shapes (such as the lines angles triangles) to make and test conjectures and solve problems C-4.2: Proves theorems using Euclid's axioms and postulates for triangles and quadrilaterals, and applies them to solve geometric problems C-7.3: Proves theorems using Euclid's axioms and postulates - for angles, triangle, quadrilaterals, circles, area-related theorems for triangles and parallelograms Learning outcome:Enable learners to learn to think critically and solve problems, and use a multidisciplinary perspective	Teacher asks the students in groups to practice the following questions 1. Problem no. 1,2 and 3 from exercise- 8.2 from chapter-8, Quadrilaterals. 2. In the given fig. ABCD is a parallelogram I which P is the mid-point on $A C$, such that $C Q=1 / 4 \mathrm{AC}$. Also, PQ when produced meets BC at R. Prove that R is the mid-point of $B C$.		https://yout M7L6VAwZn =YScdhvtZ2E 2 SOURCE https://www ube.com/@r withmadhuri

WORK SHEET

Chapter:8

Multiple choice questions

I. What is the sum of angles of quadrilaterals?
I. 90
II. 180
III. 360
IV. 270
2. A quadrilateral with only one pair of opposite sides parallel is called:
I. Trapezium
II. Square
III. Rectangle
IV. Rhombus
3. The consecutive angles of a parallelogram are
I. Complementary
II. Supplementary
III. Equal
IV. None of these
4. If in a parallelogram its diagonals bisect each other and are equal then it is a,
I. Square
II. Rectangle
III. Rhombus
IV. Parallelogram

Solve the following problems
5. In a parallelogram ABCD if $\angle B=135^{0}$ determine the measures of its other angles?
6. ABCD is a rhombus such that $\angle A B D=50^{\circ}$, then what is the measure of $\angle A C B$?
7. A diagonal of a parallelogram divides its into how many congruent triangles?
8. If the angle of a parallelogram is two-third of its adjacent angle, find the angles of the parallelogram?
9. In a quadrilateral $A B C D$, the angles A, B, C, and D are in the ratio of $I: 2: 4: 5$. Find the measure of each angles of the quadrilateral?
10. In a parallelogram $A B C D$ determine the sum of angles $\angle C$ and $\angle D$

WORK SHEET-2

Multiple Choice Questions.

I. If in a parallelogram its diagonals bisect each other at right angles and are equal, then it is a
I. Square
II. Rectangle
III. Rhombus
IV. Parallelogram
2. The quadrilateral formed by joining the mid-points of the sides of a quadrilateral $A B C D$ taken in order is a square only if.
I. $A B C D$ is a rhombus
II. Diagonals of ABCD are equal
III. Diagonals of $A B C D$ are equal and perpendicular
IV. Diagonals of ABCD are perpendicular
3. Which of the following is not true?
I. Every square is a rectangle
II. Every rectangle is a quadrilateral
III. Every parallelogram is a trapezium
IV. None of these
4. Which of the following is not true for a parallelogram?
I. Diagonals bisect each other
II. Opposite sides are equal
III. Opposite angles are equal
IV. Opposite angles are bisected by the diagonals

WORK SHEET-3
 Multiple Choice Questions

Solve the following problems

I.ABCD is a parallelogram such that its diagonals are equal. What is the measure of $\angle A B C$?
2.In a parallelogram ABCD IF $\angle C=80^{\circ}$, then what is the measure of $\angle A$?
3.Diagonals of a parallelogram $A B C D$ intersects at o. If $\angle B O C=90^{\circ}$ and $\angle B D C=40^{\circ}$ then whatis the measure of $\angle O A B$?
4.Name the various kinds of Parallelograms?
5.In a quadrilateral $\mathrm{ABCD}, \mathrm{CO}$ and DO are the bisectors of $\angle C$ and $\angle D$ respectively. Prove that $\angle C O D=1 / 3(\angle A+\angle B)$.
6. In a triangle P, Q and R are the mid points of the sides $B C, C A$ and $A B$ respectively. If $A C=21 \mathrm{~cm}, B C=29 \mathrm{~cm}$ and $A B=30 \mathrm{~cm}$, find the perimeter of the quadrilateral ARPQ.

CIRCLES

Chapter 9

https://epathshala.nic.in/topic-d.php?id=0962ch10

Introduction: The following curricular goals and competencies will be developed through this chapter.

Curricular Goals:

C.G. - 4 Analyses characteristics and properties of two-dimensional geometric shapes and develops mathematical arguments to explain geometric relationships

Curricular Competencies:

C-4.I Describes relationships including congruence of two-dimensional geometric shapes (such as lines, angles, triangles) to make and test conjectures and solve problems

C-4.3 Proves theorems about the geometry of a circle, including its chords, subtended angles, inscribed polygons, and area in terms of π

MIND MAP

PERIOD WISE LESSON PLAN

ING CONCEPT)	LEARNING OUTCOMES
LP 1 Recollecting the definitions of Circle, chord, diameter, radius and properties of chords and Theorem. 1	Defines circle, radius, diameter, arc (minor arc and major arc), chord, segment (minor segment and major segment), central angle and subtended angles. C120. Identifies interior, boundary and exterior of a circle. C121. Proves equal chords subtend equal angles at the Centre (and the converse).
LP 2 1) The perpendicular from the Centre of a circle to a chord bisects the chord 2) The line drawn from the Centre of a circle to bisect the chord is Perpendicular to the chord	Derives proofs of mathematical statements particularly related to geometrical concepts, like parallel lines, triangles, quadrilaterals, circles, etc., by applying axiomatic approach and solves problems using them.
LP 3 Equal chords and their distances from the Centre	Derives proofs of mathematical statements particularly related to geometrical concepts, like parallel lines, triangles, quadrilaterals, circles, etc., by applying axiomatic approach and solves problems using them.
LP 4 If two intersecting chords of a circle make equal angles with the diameters passing through their point of intersection then that the chords are equal	Derives proofs of mathematical statements particularly related to geometrical concepts, like parallel lines, triangles, quadrilaterals, circles, etc., by applying axiomatic approach and solves problems using them.
LP 5 1. Angle subtending by an arc of a circle 2. Angle subtended by an arc at the Centre is double the angle subtended by if at any point on the remaining part 3. Angles in the same segment are equal	Derives proofs of mathematical statements particularly related to geometrical concepts, like parallel lines, triangles, quadrilaterals, circles, etc., by applying axiomatic approach and solves problems using them.
LP 6 Cyclic Quadrilateral	Derives proofs of mathematical statements particularly related to geometrical concepts, like parallel lines, triangles, quadrilaterals, circles, etc., by applying axiomatic approach and solves problems using them.

Chapter Plan (Unit plan/ lesson plan)

Class: 9Chapter: 9. Circles Total no. of periods for this chapter:6Period No:1/6
Subtopic:Recollecting the definitions of Circle, chord, diameter, radius and properties of chords and Theorem. 1

Learning Outcomes \& Indicators/ MicroCompetencies	Teaching-Learning Process This should include activities to facilitate learning along with broad time duration	Pointers for formative Assessment This should include strategies that will be used to Check for Understanding - e.g., questions/worksheets/experiments/assignme nts/self-assessment checklists/etc.	Material required
Learning outcome: Students will demonstrate their knowledge of parts of circles and their relationships. Students will use appropriate tools to construct circles of given dimension. Students will find the circumference and area of the circles they construct. Students will analyze a work of art. Identifies and express the real-life situations into circles. Apply the concept of circles in daily life situations. Derive proofs of theorems in circles.	Testing prerequisite knowledge 15min Identify the circular and non-circular objects in the following? Define a circle? Identify the circular shapes in our class room? What is the name of the figure?	Is circle 2D figure or 3D figure? Identify each part and name it	Circular objects GeoGebra graph circle shapes. Ex: bangles, tennikoit ring

Summative Assessment Plan

(Only... where relevant)
1.If A, B and C are three points on a circle such that $A B=B C=C A$ and O is the Centre of the circle, then find the angle subtended by the chorc $A B, B C$ and $C A$ at the Centre O.

Teachers' Reflections and Experiences:

(Teacher has to identify write down by own)
> Did the lesson plan align with the curricular goals and competencies? if not how could be adjusted for bet alignment?
$>$ How well did the pedagogical strategies engage students and promote active participation in the learning process?
> How effective were the materials and resources used in this lesson?

Chapter Plan (Unit plan/ lesson plan)Period plan (40 Minutes)

4) understand the relation between chord and Perpendicular from the Centre.	Measure length of and MB? What do you notice? Is $\mathrm{AM}=\mathrm{MB}$? Express the relation between and $A B$ in your own words? Teacher explains the theorems by making groups: $15 m i n$ Theorem 9.3: The perpendicular drawn from the Centre of a circle to a chord bisects the chord. What is given? What is to be prove? For proving the above theorem first, you have to draw	Formative Assessment 1.In the adjacent figure Find the length of OB, $M B$ and $A B$	the line drav through cen of a circle to bisect a chor perpendicul Visual aid Chalk anc Blackboa

| | circle with any radius?
 Draw a chord for that circle?
 Draw a perpendicular from Centre to the chord. | 2. In the given figure $O R \perp P Q$,
 $\angle O P Q=60^{\circ}$, then find $\angle O Q P, \angle O P R$
 $\angle Q O R$ |
| :--- | :--- | :--- | :--- |
| GeoGebra | | |

	APPLICATION: Find the length of a chord which is at a distance of 5 cm from the Centre of a circle of radius 13 cm	

Summative Assessment Plan (Only... where relevant)

1.Two circles of radius 5 cm and 3 cm intersect at two pints and the distance between these centers is by a fixed the length of the common chord.
2.Prove that the line joining the mid-points of two parallel chords of a circle passes through the center.

Teachers' Reflections and Experiences:

(Teacher has to identify write down by own)
> Did the lesson plan align with the curricular goals and competencies? if not how could be adjusted for better alignment?
$>$ How well did the pedagogical strategies engage students and promote active participation in the learning process?
$>$ How effective were the materials and resources used in this lesson?

Chapter Plan (Unit plan/ lesson plan)Period plan (40 Minutes)

Draw relevant figure by using and read the above statement. 1. Draw a circle with Centre "O" 2. From the Centre " O " draw two-line segments OL and OM of equal length. 3. Draw chords PQ and RS of the circle perpendicular to OL and ON respectively 4.Measure the length of the $P Q$ and $R S$ 5.what do you notice? 6.wrte your conclusion? Example (model problem) If two intersecting chords of a circle make equal angles with the diameter passing through their point of intersection, prove that the chords are equal.	Formative Assessment 1. In the adjacent Figure $\mathrm{OM}=\mathrm{ON}$. If $A B=5 \mathrm{~cm}$ then find the length of $C D$ 2. Two circles of radii 5 cm and 3 cm intersect at two points and the distance between their centers is 4 cm . Find the length of the common chord. 3.Prove that Chords equidistant from the Centre of a circle are equal in length.

	What is given in the problem? Draw the relevant figure? What is to be proved? Draw perpendiculars OL and OM on chords $A B$ and CD, respectively. Is $\angle L O E=\angle M O E$? (give reasons) In triangles OLE and OME, Write your conclusion?	

Summative Assessment Plan

(Only... where relevant)
I. A circular park of radius 20 m is situated in a colony. Three boys Ankur, Syed and David are sitting at equal distance on its boundary each having a toy telephone in his hands to talk each other. Find the length of the string of each phone.

Teachers' Reflections and Experiences:

(Teacher has to identify write down by own)
> Did the lesson plan align with the curricular goals and competencies? if not how could be adjusted for better alignment?
$>$ How well did the pedagogical strategies engage students and promote active participation in the learning process?
> How effective were the materials and resources used in this lesson?

Chapter Plan (Unit plan/ lesson plan)Period plan (40 Minutes)

Total no. of periods for this chapter: 6Period No:4 / 6 Sub Topic: If two intersecting chords of a circle make equal angles with the diameters passing through their point of intersection then tha the chords are equal			
Learning Outcomes \& Indicators/ MicroCompetencies	Teaching-Learning Process This should include activities to facilitate learning along with broad time duration	Pointers for formative Assessment This should include strategies that will be used to Check for Understanding - e.g., questions/worksheets/experiments/assignment s/self-assessment checklists/etc.	Materi Requir
Learning outcome: Students will demonstrate their knowledge of parts of circles and their relationships. Students will use appropriate tools to construct circles of given dimension. Students will find the circumference and area of the circles they construct. Students will analyze a work of art. Identifies and express the real-life situations into circles. Apply the concept of circles in daily life situations. Derive proofs of theorems in circles.	Testing of Prerequisite Knowledge 1.Equal chords of a circle subtend \qquad angles at the Centre. 2.If angles Subtended by two chords of circle at the Centre are equal then what can you say about chords? 3. If a line drawn Perpendicular to the chord, then what is the ratio of chord will divide. 4 In the following figure $\mathrm{OL}=\mathrm{OM}$ then what is the relationship between $A B$ and $C D$.	Prove that Chords equidistant from the Centre of a circle are equal in length.	GeoGeb

Learning outcome: 1. Identify and express the real- life situations into circles. 2.Apply the concept of circles in daily life situation 3.Derive and proofs the theorem of circles 4. Understand the relation between Intersecting chords and angles.	Activity: Measure $\angle A E Q$ and $\angle Q E D$ write your observations. And also measure $A B$ and $C D$ also write your observations. What is your conclusion. Whole class activity Teacher explains the theorem Theorem: If two intersecting chords of a circle make equal angles with the diameter passing through their point of intersection, prove that the chords are equal. 1. Draw Relevant figure?	Activity: Three girls Reshma, Salma and Mandip are playing a game by standing on a circle of radius 5 m drawn in a park. Reshma throws a ball to Salma, Salma to Mandip, Mandip to Reshma. If the distance between Reshma and Salma and between Salma and Mandip is 6 m each, what is the distance between Reshma and Mandip?	

		In the above figure what about the lengths of chords? Is $\mathrm{OA}=\mathrm{OB}$? Give reasons? What is to be prove? Compare the triangles $\triangle \mathrm{APO}$ and $\triangle \mathrm{BPO}$ $\begin{array}{cc} \mathrm{OA}=\mathrm{OB} \quad \text { (Why?) } \\ \mathrm{OP}=\mathrm{OP} & \text { (Why?) } \\ \angle \mathrm{OAP}=\angle \mathrm{OBP} & \text { (Why?) } \end{array}$ By which congruent rule triangle APO and triangle BPO are congruent? $\angle \mathrm{APO}=\angle \mathrm{BPO} \text { (How?) }$		
	1. A circular park of r each having a toy tel	Summative Assessme (Only... where relevan radius 20 m is situated in a colony. Three boys Ankur, phone in his hands to talk each other. Find the length	d and the s	its boundary
Teac (Teac	hers' Reflections her has to identify write dow Did the lesson pla alignment? How well did the process? How effective we	and Experiences: by own) an align with the curricular goals and comp pedagogical strategies engage students and e the materials and resources used in this	enci prom sson	for better arning

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

| Draw the figures of minor arc, semicircle and |
| :--- | :--- | :--- | :--- | :--- |
| major arc. |

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

Total no. of periods fo Subtopic: Cyclic Quad	Subject: Mathematics this chapter:6 Period ilateral	Chapter: Circles o:6/6	
Learning Outcomes \& Indicators/microcompetencies	Teaching-Learning Process This should include activities to facilitate learning along with broad time duration	Pointers for formative assessmentthis should include strategies that will be used to Check for Understanding - e.g., questions/worksheets/experiments /assignments/self-assessment checklists/etc.	Material required
Learning outcome: Students understand the concept of cyclic quadrilateral and its properties.	Introduction: Teacher will ask some of the following question to recall students period knowledge about Quadrilaterals: 1.What is boundary of notebook? 2.is the shape of the all types of doors are quadrilaterals? 3.what is the shape of the ceiling of a classroom? 4. if all verities of quadrilateral lie on a circle, then it has special properties. Let has the following activity. 10 min Divide the students into group of 4-5. Instruction: Draw four different quadrilaterals and measure their angles on the in the book and discussed it with your group.	I.Is square a cyclic quadrilateral? Give reasons. 2.Can you say all parallelograms are cyclic? 3.If one angle of a cyclic quadrilateral is 40° then what is its opposite angle?	Cyclic quadrilater als models

	What did you get from the activity?		
	Write the converse of the above conclusion.? Teacher writes the statement and guide the students to prove Statement: If the sum of a pair of opposite angles of a quadrilateral is 180°, the quadrilateral is cyclic.	Write your conclusion after completion of the activity? I.Write two more statements in geometry and write their converse.	
	What is given in the theorem? $\angle \mathrm{A}+\angle \mathrm{C}=180^{\circ} \text { and } \angle \mathrm{B}+\angle \mathrm{D}=180^{\circ}$ What is to be prove? Suppose that D is not on the circle then there is a point E on the circle.		Cyclic Quadrilate Mode
	Now ABED is which type of Quadrilateral?		probler tic tai
	As per Known fact $\angle \mathrm{A}+\angle \mathrm{C}=$? and $\angle \mathrm{B}+\angle \mathrm{E}=$?		
	But $\angle \mathrm{B}+\angle \mathrm{D}=$?		
	Is it possible $\angle B+\angle E=\angle B+\angle D$		
	If it is equal what is the relationship between $\angle \mathrm{E}$ and $\angle \mathrm{D}$.		
	E must coincide D.		

	So, what is ABCD ? Problem: In Fig. given figure, AB is a diameter of the circle, CD is a chord equal to the radius of the circle. AC and BD when extended intersect at a point E. Prove that $\mathrm{AEB}=\angle 60^{\circ}$. Solution: Join OC, OD and BC. Is Triangle ODC is equilateral? What is each angle? $\angle \mathrm{CBD}=\frac{1}{2} \angle \mathrm{COD}$ Give reasons? $\angle \mathrm{CBD}=?$ $\mathrm{ACB}=90^{\circ}(\text { Why? })$ Find angle BCE. What is the value of $\angle C E B$ $\angle \mathrm{AEB}=?$	I.Identify the angle in semicircle and write its value. 2 How triangle OCD is an equilateral triangle. What is the relation angle subtended by an arc at the Centre and anglesubtended by it at any point on the remaining part of the circle? 1.A chord of a circle is equal to the radius of the circle. Find the angle subtended by the chord at a point on the minor arc and also at a point on the major arc. 2. If diagonals of a cyclic quadrilateral are diameters of the circle through the vertices of the quadrilateral, prove that it is a rectangle.	

Summative assessment plan- only where relevant

I.If the diagonals of a cyclic quadrilateral are diameters of a circle through the vertices of quadrilateral, then prov that it is a rectangle.
2.If the non-parallel sides of a trapezium are equal prove that it is cyclic.

Teachers' Reflections and Experiences:
(Teacher has to identify write down by own)

For more practice/extended learning

WORK SHEET

Level 1

1. $A D$ is a diameter of a circle and $A B$ is a chord. If $A D=34 \mathrm{~cm}, A B=30 \mathrm{~cm}$, the distance of $A B$ from the centre of the circle is :
(A) 17 cm (B) 15 cm (C) 4 cm (D) 8 cm
2) If $A B=12 \mathrm{~cm}, B C=16 \mathrm{~cm}$ and $A B$ is perpendicular to $B C$, then the radius of the circle passing through the points A, B and C is :
(A) 6 cm (B) 8 cm (C) 10 cm (D) 12 cm

Write True or False and justify your answer in each of the following:

1. Two chords $A B$ and $C D$ of a circle are each at distances 4 cm from the centre. Then $A B=C D$.
2. Two chords $A B$ and $A C$ of a circle with centre O are on the opposite sides of $O A$. Then $\angle O A B=\angle O A C$.

Level 2

1. If arcs $A X B$ and $C Y D$ of a circle are congruent, find the ratio of $A B$ and $C D$.
2. If the perpendicular bisector of a chord $A B$ of a circle $P X A Q B Y$ intersects the circle at P and Q, prove that arc $P X A \cong \operatorname{Arc} P Y B$.
3. A, B and C are three points on a circle. Prove that the perpendicular bisectors of $A B, B C$ and $C A$ are concurrent.

Level 3

1. If two equal chords of a circle intersect, prove that the parts of one chord are separately equal to the parts of the other chord.
2. If non-parallel sides of a trapezium are equal, prove that it is cyclic.

回特象回 04% 8解至路向

Activity

I O. Heron's Formula

[Scan the QR Code]
[Go To https://epathshala.nic.in/ or https://epathshala.nic.in/topic-d.php?id=0962CH|2]

THE FOLLOWING CURRICULAR GOALS (CG) AND COMPETENCIES (C) WILL BE DEVELOPED THROUGH THIS CHAPTER

CURRICULAR GOALS(CG)

CG-5 Derives and uses formulae to calculate areas of plane figures, and surface areas and volumes of solid objects.

CG-IO Knows and appreciates important contributions of mathematicians from India and around the world.

COMPETENCIES (C)

C-5.I Visualizes, represents, and calculates the area of a triangle u Heron's formula and its generalization to cyclic quadrilaterals give Brahmagupta's formula.
C-IO.I Recognizes the important contributions made by mathematicians (Indian and others) in the field of Mathematics (su as the evolution of numbers, geometry, algebra).

MIND MAP

PERIOD WISE PLAN

PERIOD (teaching topic)	LEARNING OUTCOMES
LP I: Find area of triangle especially scalene triangle by using Heron's Formula	Identifies whether half base times height can be used to find area of triangle
LP2: Heron's formula and its applications	I.Applies Herons formula to find area of triangles 2.Solve real life problems related to area of composite figures
LP 3; Heron's formula and its applications	I.Applies Herons formula to find area of triangles 2.Solve real life problems related to area of composite figures
LP4 Herons formula and its applications	I.Applies Herons formula to find area of triangles 2.Solve real life problems related to area of composite figures
LP5 Herons formula and its applications	I.Applies Herons formula to find area of triangles 2.Solve real life problems related to area of composite figures

Chapter Plan (Unit Plan / Lesson Plan)Time: 40 minutes

Class: $9^{\text {th }}$ Subject: MathematicsChapter: Heron's Formula

Total no. of periods for this chapter:05
Period no:01/05
Subtopic: Area of triangle

Curricular Goals:

CG-5 Derives and uses formulae to calculate areas of plane figures, and surface areas and volumes of solid objects.
CG-IO Knows and appreciates important contributions of mathematicians from India and around the world.

Curricular competencies:

C-5.I Visualizes, represents, and calculates the area of a triangle using Heron's formula and its generalisation to cyclic quadrilaterals given by Brahmagupta's formula.
C-IO.I Recognizes the important contributions made by mathematicians (Indian and others) in the field of Mathematics (such as the evolution of numbers, geometry, algebra).

Learning Outcomes \& Indicators/microcompetencies	Teaching-Learning Process This should include activities to facilitate learning along with broad time duration	Pointers for formative assessmentthis should include strategies that will be used to Check for Understanding - e.g., questions/worksheets/experiments lassignments/self-assessment checklists/etc.	Material required
Competencies: C-5.I Visualises, represents, and calculates the area of a triangle using Heron's formula and its generalization to cyclic quadrilaterals given by Brahmagupta's formula. C-IO.I Recognises the	Teacher engages the students in recall of previous knowledge through series of computational questions/activity: (15 min) Draw some triangles on graph sheet?		GeoGebra I.Types of triangles models 2.Graph sheets

important contributions made by mathematicians (Indian and others) in the field of Mathematics (such as the evolution of numbers, geometry, algebra). Learning Outcomes: Identifies whether half base times height can be used to find area of triangle	 How many unit squares are there in triangle? What is the area of shaded region? What do we call the region bounded by triangle? What is the area of triangle? Activity: (15 min) Measure base and corresponding height and write.	Do this activity: In each figure identify base corresponding height and fin its area?

Area of eqilateral triangle $=\frac{1}{2} \times s \times \frac{\sqrt{3}}{2} s=\frac{\sqrt{3}}{4} s^{2} \quad h=\sqrt{\frac{3}{4} s^{2}-\frac{1}{4} s^{2}}$

		28 cm, then find its area.
I.The base and hypotenuse of a right-angled triangle are respectively 5 cm and I 3 cm . Find its area.		
2.Find the area of an isosceles triangle having base 2 cm and length of one of the equal sides is 4 cm .		
Summative assessment plan- only where relevant		
I.Did the lesson plan align with the curricular goals and competencies? If not How could be adjusted for better		
alignment?		
2.How well did the pedagogical Strategies engage students and promote active participation in the learning process?		
3.How well Did the assessment strategies measure student understanding and achievement of the learning		
outcomes?		
4.How effective were the Materials and resources used in the lesson?		
5.Did the lesson incorporate formative assessment Strategies to guide pedagogy and provide timely feedback to		
students?		

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

	Write lengths of sides in terms of x ? Use perimeter as 420 m find the value of x . Write Lenths of sides by substituting value of x ? Now find ' S ' and also find area of triangle.	b, c. $\begin{aligned} & {\left[a=420 \times \frac{6}{21}=120 \mathrm{~m}\right.} \\ & b=420 \times \frac{7}{21}=140 \mathrm{~m} \\ & \left.c=420 \times \frac{8}{21}=160 \mathrm{~m}\right] \end{aligned}$	

Summative assessment plan- only where relevant

1. There is a slide in a park. One of its side walls has been painted in some colour with a message "KEEP THE PARK GREEN AND CLEAN" If the sides of the wall are $15 \mathrm{~m}, 11 \mathrm{~m}$ and 6 m , find the area painted in colour.

2. The perimeter of a triangular field is 450 m and its sides are in the ratio 13:12:5. Find the area of triangle.
I.Did the lesson plan align with the curricular goals and competencies? If not How could be adjusted for better alignment?
2.How well did the pedagogical Strategies engage students and promote active participation in the learning process?
3.How well Did the assessment strategies measure student understanding and achievement of the learning outcomes?
4.How effective were the Materials and resources used in the lesson?
5.Did the lesson incorporate formative assessment Strategies to guide pedagogy and provide timely feedback to students?

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

	$\begin{aligned} & \Delta=\sqrt{\frac{3 a}{2} \times \frac{a}{2} \times \frac{a}{2} \times \frac{a}{2}} \quad \frac{3 a}{2}-a=\frac{3 a-2 a}{2}=\frac{a}{2} \\ & \Delta=\frac{\sqrt{3}}{4} a^{2} \end{aligned}$ 2.Now consider isosceles triangle the Length of equal sides are a units and its base is b units. What type of triangle is? Find S ? Write heron's formula? $\Delta=\sqrt{s(s-a)(s-b)(s-c)}$ Replace s by $S=\frac{2 a+b}{2}$ in the above formula. Teacher explains the simplification $\left(\Delta=\sqrt{\frac{2 a+b}{2}\left(\frac{2 a+b}{2}-\boldsymbol{a}\right)\left(\frac{2 a+b}{2}-\boldsymbol{a}\right)\left(\frac{2 a+b}{2}-\boldsymbol{b}\right)}\right)$	Write the formula for area of isosceles triangle ? Formative Assessment: I. How many times area is changed when sides of a triangle are tripled? 2. The edges of triangular board are $6 \mathrm{~cm}, 8 \mathrm{~cm}$ and 10 cm . What is the cost painting it at the rate of a 9 paise per cm^{2} 3. If the sides of a triangle are $35 \mathrm{~cm}, 54 \mathrm{~cm}$, and 61 cm , respectively. Then, find the length of its longest altitude.	

Summative assessment plan- only where relevant

I. The sides of a triangular park are $8 \mathrm{~m}, 10 \mathrm{~m}$, and 6 m , respectively. A small circular area of diameter 2 m is to be left out and the remaining area is to be used for growing roses. How much area is used for growing roses? (Take $\pi=3.14$)

Teachers' reflections and experiences:

I.Did the lesson plan align with the curricular goals and competencies? If not How could be adjusted for better alignment?
2.How well did the pedagogical Strategies engage students and promote active participation in the learning process?
3. How well Did the assessment strategies measure student understanding and achievement of the learning outcomes?
4.How effective were the Materials and resources used in the lesson?
5.Did the lesson incorporate formative assessment Strategies to guide pedagogy and provide timely feedback to students?

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

	$\Delta B C E=\frac{1}{2} \times 12 \times C L=6 \times C L \ldots(i i) ~$ Equate (i) and (ii) and find the value of CL. $C L=3 \sqrt{21} \mathrm{~cm}$
By the figure the height of trapezium same as to height of	
triangle $\triangle B C E$.	
Using $A B=25 \mathrm{~cm} C D=13 \mathrm{~cm}$ and $C L=3 \sqrt{21} \mathrm{~cm}$. Find area of given	
trapezium	

Summative assessment plan- only where relevant

Radha made a picture of an aero plane with colored paper as shown in the figure. Find total area of the paper used.

Teachers' reflections and experiences:

I. Did the lesson plan align with the curricular goals and competencies? If not How could be adjusted for better alignment?
2. How well did the pedagogical Strategies engage students and promote active participation in the learning process?
3. How well Did the assessment strategies measure student understanding and achievement of the learning outcomes?
4. How effective were the Materials and resources used in the lesson?
5. Did the lesson incorporate formative assessment Strategies to guide pedagogy and provide timely feedback students?

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

Learning outcome: Applies Herons formula to find area of triangles Solve real life problems related to area of composite figures	iii) Find the total area of the corner, where he writes, how to save the water. iv) Find the area of remaining sheet. In the above case study what child does think? What type of triangular sheet he took? What is the side of each side? What is area of equilateral triangle? Write the area of triangular sheet? Where slogan is written? What is the area of circular region? Write the area of circle? Find the area of circle? Find total area of corner of a triangle? Find the area of remining portion? What are regions subtracted from the area triangle? Find the area of remaining portion? 2.Students of a school staged a rally for a cleanliness campaign. They walked through the lanes in two groups. One group walked through the lanes $A B, B C$, and $C A$; where the Other through $A C, C D$, and $D A$. Then they cleaned the area enclosed within their lanes. If $A B=9 m$, $B C=40 \mathrm{~m}, C D=15 \mathrm{~m}, \mathrm{DA}=28 \mathrm{~m}$ and $\angle B=90^{\circ}$, which group cleaned more area and by how much? Find the total area cleaned by the students.	Formative assessment In the marriage of Ram's brother Rajesh, a conical tent is made by stitching 12 triangular pieces of cloth of two different colours red and white alternatively, each piece measuring $10 \mathrm{~cm}, 20 \mathrm{~cm}$, and 20 cm . I. Write the formula find the area of triangle? 2. Find the semi-Perimeter red color triangle. 3. Find the area of one red colour triangle. 4. How much cloth of red colour is required to make a conical tent? 5. Find the total length of triangular pieces of

	What is the angle at B from the figure? What type of triangle $A B C$ is? Write the lengths of $A B$ and $B C$? Find the length of $A C$? Find the area of right triangle $A B C$. Now find the area of $\triangle A C D$ using Heron's formula. Find perimeter of $\triangle A C D$. How much area cleaned by $1^{\text {st }}$ group? How much area cleaned by $2^{\text {nd }}$ group? Which group cleaned more area and by how much? What is the total area cleaned by all the students?	white colour?	

Summative assessment plan- only where relevant

In my colony a park is situated in front of my house. This park is built is the shape of triangle with the following sides $150 \mathrm{~m}, 100 \mathrm{~m}$ and 60 m .Now-a-days, some animals enter the park and destroy the plants by eating them. So, our ward member of the area has decided to put a railing around the park for protecting plants and grass. Ward member ordered the gardener to place a railing all round this park and maintain grass inside the park. He also sanctior an amount to improve the park in a proper way for the public in a proper way for the public of that colony. Costing is decided at Rs. 10 per meter for the railing around the park.
i) Calculate the Semi-perimeter of triangle park, in which planting is needed.
ii) Calculate the area, in which planting is needed.
iii) Find the cost of railing with hurtful iron wires at the rate of Rs.IO per meter leaving a space 2 m wide for a gate on one side of triangle park.
iv) What is the perimeter of the park?
v) Name the formula which is used for getting the area of triangle when sides known

Teachers' reflections and experiences:

NCERT exemplar

For more practice/extended learning

Worksheet

Level I

1. An isosceles right triangle has area 8 cm 2 . The length of its hypotenuse is
(A) 32 cm
(B) 16 cm
(C) 48 cm
(D) 24 cm
2. The sides of a triangle are $56 \mathrm{~cm}, 60 \mathrm{~cm}$ and 52 cm long. Then the area of the triangle is
(A) 1322 cm 2
(B) 1311 cm 2
(C) 1344 cm 2
(D) 1392 cm 2
3. The sides of a triangle are $35 \mathrm{~cm}, 54 \mathrm{~cm}$ and 61 cm , respectively. The length of its longest altitude?

Level 2

Write True or False and justify your answer:

1. The area of a triangle with base 4 cm and height 6 cm is 24 cm 2
2. The base and the corresponding altitude of a parallelogram are 10 cm and 3.5 cm , respectively. The area of the parallelogram is 30 cm 2
3. The area of a regular hexagon of side ' a ' is the sum of the areas of the five equilateral triangles with side a

Level 3:

Long Answer Questions:

1. Find the cost of laying grass in a triangular field of sides $50 \mathrm{~m}, 65 \mathrm{~m}$ and 65 m at the rate of Rs $7 \mathrm{per} \mathrm{m}^{2}$
2. From a point in the interior of an equilateral triangle, perpendiculars are drawn on the three sides. The lengths of the perpendiculars are $14 \mathrm{~cm}, 10$ cm and 6 cm . Find the area of the triangle.
3. The perimeter of an isosceles triangle is 32 cm . The ratio of the equal side to its base is $3: 2$. Find the area of the triangle.
4. 9 A rhombus shaped sheet with perimeter 40 cm and one diagonal 12 cm , is painted on both sides at the rate of Rs 5 per m^{2}. Find the cost of painting.
5. If each side of a triangle is doubled, then find the ratio of area of the new triangle thus formed and the given triangle.

CLASS: 9

Surface Areas and Volumes

INTRODUCTION:

CURRICULAR GOALS	COMPETENCIES
CG-5: Derives and uses formulae to calculate areas of plane figures, and surface areas and volumes of solid	C-5.2: Visualizes and uses mathematical thinking to discover formulae to calculate surface areas and volumes of solid objects (cubes, cuboids, spheres, hemispheres, right circular cylinders/cones, and their combinations)

CLASS : 9

Period No.	Teaching Topic	Learning Outcomes / Objectives
1	Surfacearea of aCone.	1. Observational and identification skill while identifying the surfaces, edges and vertices of 3-D shapes. 2. Numeracy and calculation skills while calculating surface area. 3. Procedural thinking while doing questions. 4. Developing connections between LSA and TSA 5 . Visual and spatial ability
2	Surface Area of a Right Circular Cone. Problems Part. 1	1. Able to find the formula for its Total Surface Area of Cone and Apply TSA + CSA in solving word problems 2. Observational and identification skill while identifying the surfaces, edges and vertices of 3 - D shapes. 3. Numeracy and calculation skills while calculating surface area.
3	SurfaceAreaofaRightCircularCone. Problems Part. 2	1. Able to find the formula for its Total Surface Area of Cone and Apply TSA + CSA in solving word problems, Observational and identification skill while identifying the surfaces, edges and vertices of 3-D shapes. 2. Numeracy and calculation skills while calculating surface area. 3. Procedural thinking while doing questions about Developing connections between LSA and TSA.
4	Surface Area of a Sphere	1. Able to Derive the formula for TSA of hemisphere.Apply the formula in real life situations. 2. Observational and identification skill while identifying the surfaces, edges and vertices of $3-\mathrm{D}$ shapes. 3. Numeracy and calculation skills while calculating surface area.
5	SurfaceAreaofaSphere	1. Able to Derive the formula for TSA of hemisphere.Apply the formula in real life situations. 2. Observational and identification skill while identifying the surfaces, edges and vertices of 3- D shapes. 3. Developing connections between LSA and TSA
6	SurfaceAreaofaSphere and problems.	1. Able to Derive the formula for TSA of hemisphere.Apply the formula in real life situations. Observational and identification skill while identifying the surfaces, edges and vertices of 3-D shapes. 3. Developing connections between LSA and TSA
7	Volume of the right circular cone	1. Able to deduce the formula to find the volume of cone and its application to practical problems. 2. Observational and identification skill while identifying the surfaces, edges and vertices of 3- Dshapes. 3. Developing connections between LSA andTSA.
8	Problems on Volume of Cone	1. Able to deduce the formula to find the volume of cone and its application to practical problems. 2. Observational and identification skill while identifying the surfaces, edges and vertices of 3-Dshapes. 3. Developing connections between LSA andTSA.
9	Volumeof Cone - Problems related Day - to -day life	1. Able to deduce the formula to find the volume of cone and its application to practical problems. 2. Observational and identification skill while identifying the surfaces, edges and vertices of 3- Dshapes. 3. Developing connections between LSA andTSA.
10	Volume of Sphere	1. Able to deduce the formula to find the volume of cone and its application to practical problems. 2. Observational and identification skill while identifying the surfaces, edges and vertices of 3-Dshapes. 3. Developing connections between LSA andTSA.
11	Problems on volume of the sphere	1. Able to deduce the formula to find the volume of cone and its application to practical problems. 2. Observational and identification skill while identifying the surfaces, edges and vertices of 3-Dshapes. 3. Developing connections between LSA

12	Some more Problems on Volume of Sphere	1. Able to deduce the formula to find the volume of cone and its application to practical problems. 2. Observational and identification skill while identifying the surfaces, edges and vertices of 3- Dshapes. 3. Developing connections between LSA andTSA.
$\mathbf{1 3}$	Some more Problems of Volume of Sphere	1. Able to deduce the formula to find the volume of cone and its application to practical problems. 2. Observational and identification skill while identifying the surfaces, edges and vertices of 3- Dshapes. 3. Developing connections between LSA andTSA.
$\mathbf{1 4}$	Practicing Case based Questions	1. Able to deduce the formula to find the volume of cone and its application to practical problems. 2. Observational and identification skill while identifying the surfaces, edges and vertices of 3- Dshapes. 3. Developing connections between LSA andTSA.

$\begin{array}{lll}\text { Key concepts: } & \text { 1) CIRCLE } & \text { 2) CONE } \\ \text { 3) LSA OF CONE4) TSA OF CONE }\end{array}$

Class: $9^{\text {th }}$ Subject: MathematicsChapter: SURFACE AREA AND VOLUMES

Total no. of periods for this chapter: I 4Period no:I /I4

Subtopic:Surfacearea of aCone.

Learning Outcomes \& Indicators/microcompetencies	Teaching-Learning Process This should include activities to facilitate learning along with broad time duration	Pointers for formative assessment- this should include strategies that will be used to Check for Understanding - e.g., questions/worksheets/experiments/assig nments/self-assessment checklists/etc.	Material required
C-5.2: Visualizes and uses mathematical thinking to discover formulae to calculate surface areas and volumes of solid objects. (cubes, cuboids, spheres, hemispheres, right circularcylinders/cone s, and their combinations)	(5 mins) Warm up Demonstration by facilitator on Black board Facilitator starts the lesson by asking some questions relating to the LSA of a cone. Doubts will be taken up in the class DRIVING QUESTION How would you find the total surface area of the cone? Demonstration by Facilitator on Board Activity for the students with paper (25 mins) Activity:(i)Cutoutaneatlymadepaperconethatdoesnothavea nyoverlappedpaper,straight alongitsside, andopeningitout,toseetheshapeofpaperthatfor msthesurfaceofthecone. (Thelinealongwhichyoucuttheconeistheslantheightoftheco newhichisrepresentedby l).Itlookslikeapartofaroundcake.		https://youtu.be/rd8tbD2 eekM?si=4w1KbBgaEl3\| kR SOURCE::https://www.y outube.com/@InfinityLea rn NEET What is the Surface Area of a Right Circular Cone?
Able to find the formula for its Total Surface Area of Cone and Apply TSA + CSA in solving word			Teacher can use the above 5 min . video to demonstrate the activity on finding surface area

Summative Assessment plan- only where relevant

1. Find the vertical height of a right circular cone whose radius is 6 cm and slant height is 10 cm .

Teachers' reflections and experiences:

1.Did the lesson plan align with the curricular goals and competencies? If not How could be adjusted for better alignment?
2. How well did the pedagogical Strategies engage students and promote active participation in the learning process?
3.How well Did the assessment strategies measure student understanding and achievement of the learning outcomes?
4.How effective were the Materials and resources used in the lesson?
5.Did the lesson incorporate formative assessment Strategies to guide pedagogy and provide timely feedback to students?

Class: $9^{\text {th }}$	Subject: Mathematics
Total no. of periods for this chapter:14	Period no :2 / 14

Total no. of periods for this chapter:14 Period no :2 / 14

Subtopic: Surface Area of a Right Circular Cone. problems

Learning Outcomes \& Indicators/microcompetencies	Teaching-Learning Process This should include activities to facilitate learning along with broad time duration	Pointers for formative assessmentthis should include strategies that will be used to Check for Understanding - e.g., questions/worksheets/experiments lassignments/self-assessment checklists/etc.	Material required
C-5.2: Visualizes and uses mathematical thinking to discover formulae to calculate surface areas and volumes of solid objects (cubes, cuboids, spheres, hemispheres, right circular cylinders/cones, and their combinations) Able to find the formula for its Total Surface Area of Cone and Apply TSA + CSA in solving word problems - Observational and identification skill while identifying the surfaces, edges and vertices of 3 -	Warm up Demonstration by facilitator on Black board (5 mins) Facilitator starts the lesson by asking some questions relating to the LSA of a cone. Doubts will be taken up in the class DRIVING QUESTION How would you find the total surface area of the cone? (25 mins) Demonstration by Facilitator on Board Facilitator will tell that if the area of the top and the bottom is added then it is called Total Surface Area $\mathrm{TSA}=\pi \mathrm{rl}+\pi \mathrm{r}^{2}$ The facilitator explains the practical situations where one has to	Example3:Acorncob(seeFig.11.5),sh apedsomewhatlikeacone,has theradiusofitsbroadestend as 2.1 cmandlength(height)as 20 cm .If each $1 \mathrm{~cm}^{2}$ ofthesurfaceofthecobcarriesanave rageoffourgrains,find	

Dshapes

- Numeracy and calculation skills while calculating surfacearea.
- Procedural thinking while doingquestions
- Developing connections between LSA andTSA
- Visual and spatialability
calculate the TSA.

Activity: (10 mins)

Exercise: Closure Now the facilitator takes some question from Ex-11.1 and explain the concept more clearly.

From the videos of each 3 to 4 min . solve some interesting problems on surface area of cone.

Teacher can use those videos to create interest among students in teaching learning process.

1. Diameterofthebaseofaconeis 10.5 c manditsslantheightis 10 cm .Findits curved surfacearea.
2. Findthetotalsurfaceareaofacone, if itsslantheightis21manddiameterof itsbaseis 24 m .

https://youtu.be/j29K5ftKXz Q?si=t8j74mDzMydJEydE SOURCE::https://www.yout ube.com/@TicTacLearnEng sh

https://youtu.be/9jiKr8FB O6g? $\mathrm{si}=$ ZPsojFc7bJ-

AEKsr
SOURCE::https://www.vo utube.com/@TicTacLear English

Summative assessment plan- only where relevant

1. The diameter of a cone is 14 cm and its slant height is 9 cm . Find the area of its curved surface.
2. Find the total surface area of a cone, if its slant height is 9 m and the radius of its base is 12 m .
3. The radius of a cone is 3 cm and vertical height is 4 cm . Find the area of the curved surface.
4. The radius and slant height of a cone are in the ratio $4: 7$. If its curved surface area is $792 \mathrm{~cm}^{2}$, find its radius.
5. The lateral surface of a cylinder is equal to the curved surface of a cone. If the radius be the same, find the ratio of the height of the cylinder and slant height of the cone.

Teachers' reflections and experiences:

1 Did I clearly communicate the lesson objectives to the students?
2. How can I ensure that students understand the objectives and can demonstrate their knowledge or skills related to them?
3. Did I use effective instructional strategies to engage students in the lesson?
4. How can I improve the variety and effectiveness of my teaching methods to cater to different learning styles and needs?
5. How well did I manage the classroom during the lesson?

vertices of 3-D shapes. 2.
Numeracy and calculation skills while calculating surface area. 3. Procedural thinking while doing questions about Developing connections between LSA and TSA.
3. Curved surfacearea of a cone is $308 \mathrm{~cm}^{2}$ and its slant height is 14 cm . Find
(i) radiusofthebaseand(ii)totalsurfaceareaoft hecone.
4. Whatlengthoftarpaulin 3 mwidewillberequir edtomakeconicaltentofheight8m andbaseradius6m?Assumethattheextraleng thofmaterialthatwillberequiredfor stitchingmarginsandwastageincuttingisappr oximately20cm(Usep=3.14).
5. Theslantheightandbasediameterofaconicalt ombare25mand14mrespectively.
Findthecostofwhitewashingitscurvedsurfaceattherateof7210pe r $100 \mathrm{~m}^{2}$.
(i) slantheightofthetent
(ii) costofthecanvasrequiredtomake thetent,ifthecostof1m ${ }^{2}$ canvasis 7 70.

Summative assessment plan- only where relevant

1. 1 A joker's cap is in the form of a right circular cone of base radius 7 cm and height 24 cm .Findtheareaofthesheetrequiredtomake10suchcaps.
2. Abusstopisbarricadedfromtheremainingpartoftheroad,byusing50hollowcones madeofrecycledcardboard.Eachconehasabasediameterof40cmandheight1m.If theoutersideofeachoftheconesistobepaintedand the costofpaintingis712per m^{2}, what will be the cost of painting all these cones? (Use $\pi=3.14$)

Teachers' reflections and experiences:

1. How can I improve the variety and effectiveness of my teaching methods to cater to different learning styles and needs?
2. How well did I manage the classroom during the lesson?
3. Were there any disruptions or behavioral issues that I need to address?
4. What strategies can I implement to improve classroom management?
5. Did the students actively participate and show interest in the lesson?

Subject: Mathematics
Chapter: SURFACE AREA AND VOLUMES
Total no. of periods for this chapter: 14 Period no :4/14
Subtopic: Surface Area of a Sphere

| Learning

 Indicators/micro-
 competencies | This should include activities to facilitate
 learning along with broad time duration | Pointers for formative assessment-
 this should include strategies that
 will be used to Check for
 Understanding - e.g., |
| :--- | :--- | :--- | :--- |

calculation skills while calculating surfacearea.

- Procedural thinking while doingquestions.
- Developing connections between LSA andTSA
- Visual and spatialability

Nowifyoupasteastring

alongadiameterofacirculardiscandrotateitasyouhadro tatedthetriangleintheprevious
section,youseeanewsolid

Whatdoesitresemble?

Aball?Yes.Itiscalleda sphere.

Canyouguesswhathappenstothecenterofthecircle,wh enitformsasphereonrotation? Of course, it becomes the center of the sphere.

Conclusion: A sphere is a three-dimensional figure (solid figure), which is made up of all points in the space, which lie at a constant distance called the

A sphere is like the surface of a ball. The word solid sphere is used for the solid whose surface is a sphere.

	radius, from a fixed point called the center of thesphere. (25 mins) Demonstration by Facilitator on Board She tells that in the sphere all the area is lateral area as the sphere has no base and no top and this is also called curved surface area as the surface iscurved. Activity: (a) (b) Lateral Surface area of Sphere $=4 \pi \mathrm{r}^{2}$ Total surface areaof Sphere $=4 \pi \mathrm{r}^{2}$	1. How many circles of areas equal to the area of the sphere? 2. Explain how a sphere is divided into 4 circles?	
Summative Assessment plan- only where relevant 1. Calculate the cost required to paint a football which is in the shape of a sphere having a radius of 7 cm . If the painting cost of football is $\operatorname{INR} 2.5 / \mathrm{square} \mathrm{cm}$. (Take $\pi=22 / 7$)			
Teachers' reflections and experiences:			

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

Class: $\mathbf{9}^{\text {th }}$ Total no. of period Subtopic: SurfaceAre	Subject: Mathematics for this chapter: 14 Period no :5/ 14 aSphere	Chapter: SURFACE AREA AND VOLUMES	
Learning Outcomes \& Indicators/microcompetencies	Teaching-Learning Process This should include activities to facilitate learning along with broad time duration	Pointers for formative assessmentthis should include strategies that will be used to Check for Understanding - e.g., questions/worksheets/experiments/as signments/self-assessment checklists/etc.	Material required
C-5.2: Visualizes and uses mathematical thinking to discover formulae to calculate surface areas and volumes of solid objects (cubes, cuboids, spheres, hemispheres, right circular cylinders/cones, and their combinations)	(5 mins) Warm Up (Individual Work) + Black Board Demonstration by Learners (25 mins) Demonstration by Facilitator on Board Howmanyfacesdoyouseeinthesurfaceofasphere?Therei sonlyone,whichiscurved.		
Able toDerive the formula for TSA of hemisphere. Apply the formula in real life situations. - Observational and identification skill while identifying the surfaces, edges	Now,letustakeasolidsphere,andsliceitexactly'throughth emiddle’ with a plane that passes through its center. What happens to the sphere? Yes,itgetsdividedintotwoequalp arts(seeFig.11.8)! Whatwilleach half be called? It is called a hemisphere. (Because 'hemi'		

and vertices of 3 Dshapes.

- Numeracy and calculation skills while calculating surfacearea.
- Procedural thinking while doingquestions.
- Developing connections between LSA andTSA
- Visual and spatialability
also means 'half')

And what about the surface of a hemisphere? How many faces does it have?
Two!Thereisacurvedfaceandaflatface(base)
The curved surface area of a hemisphere is half the surface area of the sphere,

10 mins closer

Lateral Surface area of Sphere $=4 \pi \mathrm{r}^{2}$
Total surface areaof Sphere $=4 \pi r^{2}$
Curved/lateral surface Area of Hemisphere $=2 \pi r^{2}$ Total surface Area of a Hemisphere $=3 \pi r^{2}$
The facilitator explains the practical situations where one has to calculate the lateral surface

1. Findthesurfaceareaofasphereofradius:

14 cm

2. Findthesurfaceareaofasphereofradius:
10.5 cm
1.Findthesurfaceareaofasphereofradius:
(i) 10.5 cm
(ii) 5.6 cm
3. Find the surface area of a sphere of radius 7 cm .
3.Find(i)thecurvedsurfaceareaand(ii)thetotals urfaceareaofahemisphereof radius 21 cm .

Summative assessment plan- only where relevant

1 :The hollow sphere, in which the circus motorcyclist performs his stunts, has a diameter of 7 m . Find the area available to the motorcyclist for riding.

2 :A hemispherical dome of a building needs to be painted (see Fig. 11.9). If the circumference of the base of the domeis 17.6 m , find the cost of painting it, given the cost of painting is 75 per $100 \mathrm{~cm}^{2}$.

Class: $9^{\text {th }}$ Subject: Mathematics
 Total no. of periods for this chapter: 14 Period no :6/14

 Subtopic: SurfaceAreaofaSphere, problems.| Learning Outcomes \& Indicators/microcompetencies | Teaching-Learning Process This should include activities to facilitate learning along with broad time duration | Pointers for formative assessmentthis should include strategies that will be used to Check for Understanding - e.g., questions/worksheets/experiments lassignments/self-assessment checklists/etc. | Material required |
| :---: | :---: | :---: | :---: |
| C-5.2: Visualizes and uses mathematical thinking to discover formulae to calculate surface areas and volumes of solid objects (cubes, cuboids, spheres, hemispheres, right circular cylinders/cones, and their combinations) Able to Derive the formula for TSA of hemisphere. Apply the formula in real life situations.
 - Observational and identification skill while identifying the surfaces, edges and vertices of 3Dshapes. | (5 mins) Warm Up
 (Individual Work) + Black Board Demonstration by Learners
 (25 mins) Demonstration by Facilitator on Board
 Teacher can use the 7 min . video relating to finding surface area of sphere.
 Explain exercise problems
 3. Findthesurfaceareaofasphereofdiameter:
 (i) 14 cm
 (ii) 21 cm
 4. Findthetotalsurfaceareaofahemisphereofradi us10cm.(Usep=3.14)
 5. Theradiusofasphericalballoonincreasesfrom 7 cmto 14 cmasairisbeingpumped intoit.Findtheratioofsurfaceareasoftheballoo ninthetwocases.
 6. Ahemisphericalbowlmadeofbrasshasinnerdia | Assignment:
 1. Findthesurfaceareaofasphereofdiamete r :
 i. 14 cm
 (ii) 21 cm
 2. Findthetotalsurfaceareaofahem isphereofradius 10 cm .(Usep=3. 14)
 3. Theradiusofasphericalballooni ncreasesfrom7cmto14cmasairi sbeingpumped intoit.Findtheratioofsurfacear easoftheballooninthetwocases | https://youtu.be/V9LEp
 sd4D5I?si=5JoaUjp7czih
 gTcD
 SOURCE::https://www.y
 outube.com/@TicTacLe
 arnEnglish |

- Numeracy and calculation skills while calculating surfacearea.
- Procedural thinking while doingquestions.
- Developing connections between LSA andTSA
- Visual and spatialability Analytical thinking and problemsolving.
meter 10.5 cm .Findthecostoftinplatingitontheinsideattherateof716per100c m^{2}.
Lateral Surface area of Sphere $=4 \pi r^{2}$
Total surface areaof Sphere $=4 \pi r^{2}$
Curved/lateral surface Area of Hemisphere $=2 \pi r^{2}$ Total surface Area of a Hemisphere $=3 \pi r^{2}$
10 mins closer
The facilitator explains the practical situations where one has
to calculate the lateral surface of sphere. to calculate the lateral surface of sphere.

4. Ahemisphericalbowlmadeofbr asshasinnerdiameter $10.5 \mathrm{~cm} . \mathrm{Fi}$ ndthecostoftin-
platingitontheinsideattherateo f716per100 cm^{2}.
5. Findtheradiusofaspherewhos esurfaceareais $154 \mathrm{~cm}^{2}$

Summative assessment plan- only where relevant

Arightcircularcylinderjustenclosesasphereofradiusr .Findsurfaceareaofthesphere

1. curvedsurfaceareaofthecylinder,

2. ratiooftheareasobtainedin(i)and(ii).

Teachers' reflections and experiences

1 Did I clearly communicate the lesson objectives to the students?
2. How can I ensure that students understand the objectives and can demonstrate their knowledge or skills related to them?
3. Did I use effective instructional strategies to engage students in the lesson?
4. How can I improve the variety and effectiveness of my teaching methods to cater to different learning styles and needs?
5. How well did I manage the classroom during the lesson?

Class: $9^{\text {th }} \quad$ Subject: Mathematics \quad Chapter:Total no. of periods for this chapter: 14 Period no :7/14Subtopic: Volume of a Right CircularCone			
Learning Outcomes \& Indicators/microcompetencies	Teaching-Learning Process This should include activities to facilitate learning along with broad time duration	Pointers for formative assessment- this should include strategies that will be used to Check for Understanding - e.g., questions/worksheets/experi ments/assignments/selfassessment checklists/etc.	Material required
C-5.2: Visualizes and uses mathematical thinking to discover formulae to calculate surface areas and volumes of solid objects (cubes, cuboids, spheres, hemispheres, right circular cylinders/cones, and their combinations) Able to deduce the formula to find the volume of cone and its application to practical problems.	(5 mins) Warm up (Individual work) + Black Board Demonstration by learners Inearlierclasseswehavestudiedthevolumesofcube,cuboi dand cylinder In the figure,canyouseethatthereisarightcircularcylinderand arightcircularconeofthesamebaseradiusandthesamehei ght? ($\mathbf{2 5}$ mins) Demonstration by facilitator on board The facilitator will give the small demonstration of the activity and encourage them to do the same on their own at home.		

1. Monica has a piece of canvas whose area is 551 m 2 . She uses it to have a conical tent made, with a base radius of 7 m . Assuming that all the stitching margins and the wastage incurred while cutting, amounts to approximately 1 m 2 , find the volume of the tent that can be made with it.

Teachers' reflections and experiences:

2. Did I use effective instructional strategies to engage students in the lesson?
3. How can I improve the variety and effectiveness of my teaching methods to cater to different learning styles and needs?
4. How well did I manage the classroom during the lesson?
5. Were there any disruptions or behavioural issues that I need to address?
6. What strategies can I implement to improve classroom management?

Class: $\mathbf{9}^{\text {th }}$ Total no. of period Subtopic: Prob	Subject: Mathematics r this chapter:14 Period no: 8/I4 ns on Volume of Cone	Chapter: SURFACE AREA AND VOLUMES	
Learning Outcomes \& Indicators/microcompetencies	Teaching-Learning Process This should include activities to facilitate learning along with broad time duration	Pointers for formative assessmentthis should include strategies that will be used to Check for Understanding - e.g., questions/worksheets/experiments lassignments/self-assessment checklists/etc.	Material required
C-5.2: Visualizes and uses mathematical thinking to discover formulae to calculate surface areas and volumes of solid objects (cubes, cuboids, spheres, hemispheres, right circular cylinders/cones, and their combinations.	(5 mins) Warm up (Individual work) + Black Board Demonstration by learners Recall the activity The facilitator takes some examples to tell the total quantity of substance that can be put into the cone, this quantity is called the capacity or the volume of the cone. Facilitator will show the relationship between VOLUME OF CONE AND VOLUME OF CYLINDER by pouring the sand in the container. It shows that one cylinder of radius ' r ' and height ' h ' can fill three cones of same radius ' r ' and height ' h '. Volume of cone $=1 / 3 \pi r^{2} h$ ($\mathbf{2 5} \mathbf{~ m i n s}$) Demonstration by facilitator on board The facilitator explains some practical examples, where the learners are supposing to find the volume of a cone. The facilitator takes some questions and explains the	1. Identify the differences between volume of cylinder and cone?	ttps://youtu.be/GvaSiarw7Zw?si=OztBZZO2vK3Tfhw JRCE:;https://www.youtube.com/@ TicTacLearnEnglish

formula to find the volume	concept more clearly.
of cone and its application to practical problems. Expected skill development:	1. Findthevolumeoftherightcircularconewith i. radius 6 cm , height 7 cm (ii) radius 3.5 cm , height 12 cm
Observational and identification skill while identifying the surfaces, edges and vertices of 3Dshapes.	2. Findthecapacityinlitersofaconicalvesselwith (i) radius 7 cm ,slantheight 25 cm (ii) radius 12 cm ,slantheight 13 cm
Numeracy and calculation skills while calculating surfacearea.	(10 mins) In class Exercise: Closure
Procedural thinking while doingquestions. Developing connections between LSA andTSA Visual and spatialability	1. The height of a cone is 15 cm . If its volume is $1570 \mathrm{~cm}^{3}$, find the radius of the base. 2. Ifthevolumeofarightcircularconeofheight 9 cm is $48 \mathrm{pcm}^{3}$, findthediameterofits base.

Summative assessment plan- only where relevant

1. Aconicalpitoftopdiameter3.5mis12mdeep.Whatisitscapacityinkiloliters?
2. Thevolumeofarightcircularconeis $9856 \mathrm{~cm}^{3}$. Ifthediameterofthebaseis 28 cm , find
(i) height ofthecone
(ii) slant height ofthecone(iii)curvedsurfaceareaofthecone

Teachers' reflections and experiences:

1. How can I ensure that students understand the objectives and can demonstrate their
2. knowledge or skills related to them?
3. Did I use effective instructional strategies to engage students in the lesson?
4. How can I improve the variety and effectiveness of my teaching methods to cater to
5. different learning styles and needs?
6. How well did I manage the classroom during the lesson?

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

7. Observational and identification skill while
identifying the surfaces, edges and vertices of 3Dshapes.
8. Numeracy and calculation skills while calculating surfacearea.
9. Procedural thinking while doingquestions.
10. Developing connections between LSA andTSA
11. Visual and spatialability
bouttheside 5 cm ,thenfindthe volume of the solid so obtained. Find also the ratio of the volumes of the two solids obtainedinQuestions7and8.
2. Aheapofwheatisintheformofaconewhosediamete ris10.5mandheightis3m.Find
itsvolume.Theheapistobecoveredbycanvastopro tectitfromrain. Findtheareaof the canvasrequired.

(10 mins) In class Exercise: Closure

Now the facilitator takes some questions and explains the concept more clearly.

Case based Questions:

Adventure camps are the perfect place for the children to practice decision making for themselves without parents and teachers guiding their every move. Some students of a school reached for adventure at Sakleshpur. At the camp, the waiters served some students with a welcome drink in a cylindrical glass and some students in a hemispherical cup whose dimensions are shown below. After that they went for a jungle trek. The jungle trek was enjoyable but tiring. As dusk fell, it was time to take shelter. Each group of four students was given a canvas of area 551 m 2 . Each group had to make a conical tent to accommodate all the four students. Assuming that all the stitching and wasting incurred while cutting, would amount to 1 m 2 , the students put the tents. The radius of the tent is 7 m .

Summative assessment plan- only where relevant

1. A tent is of the shape of a right circular cylinder up to a height of 3 metres and then becomes a right circular cone with a maximum height of 13.5 meters above the ground. Calculate the cost of painting the inner side of the tent at the rate of Rs. 2 per square metre, if the radius of the base is 14 meters.
2. A solid cube of side 7 cm is melted to make a cone of height 5 cm , find the radius of the base of the cone.
3. From a right circular cylinder with height 10 cm and radius of base 6 cm , a right circular cone of the same height and base is removed. Find the volume of the remaining solid.

Teachers' reflections and experiences:

1. What strategies can I implement to improve classroom management?
2. Did the students actively participate and show interest in the lesson?
3. How can I increase student engagement and create a more interactive learning environment?
4. Did I provide timely and constructive feedback to guide their learning?
5. How can I improve my assessment and feedback practices?

Class: $9^{\text {th }}$		Chapter: SURFACE AREA AND VOLUMES	
Total no. of periods for this chapter: 14 Subtopic: Volumeof Sphere			
Learning Outcomes \& Indicators/microcompetencies	Teaching-Learning Process This should include activities to facilitate learning along with broad time duration	Pointers for formative assessmentthis should include strategies that will be used to Check for Understanding - e.g., questions/worksheets/experiments lassignments/self-assessment checklists/etc.	Material required
C-5.2: Visualizes and uses mathematical thinking to discover formulae to calculate surface areas and volumes of solid objects (cubes, cuboids, spheres, hemispheres, right circular cylinders/cones, and their combinations Able to Deduce the formula to find the volume of sphere and its application to practical problems. Expected skill	(5 mins) learners Activity Learners recalls that Total/Lateral surface Area of a sphere $=4 \pi r^{2}$ Curved Surface Area of a hemisphere $=2 \pi r^{2}$ Total Surface Area of hemisphere $=3 \pi r^{2}$ Now the facilitator takes some examples to tell the total quantity of substance that can be put into the sphere, this total quantity is called the capacity or the volume of the sphere. (25 mins) demonstration by facilitator on board activity	Observe why the LSA and TSA of sphere are same?	

- Observational and identification skill while identifying the surfaces, edges and vertices of 3Dshapes.
- Numeracy and calculation skills while calculating surfacearea.
- Procedura thinking while doingquestions
- Developing connections between LSA andTSA
- Visual and spatialability

Now, let us see how to go about measuring the volume of a sphere.
First, take two or three spheresofdifferentradii,andacontainerbigenoug htobeabletoputeachofthespheresinto
it,oneatatime. .
Also,takealargetroughinwhichyoucanplacethec ontainer.Then,fillthe

(a)

(c)

(b)
containeruptothebrimwithwater.

Now, carefully place one of the spheres in the container. Some of the water from the containerwilloverflowintothetroughinwhichitiske pt

Carefullypour
$\overline{3}$
outthewaterfromthetroughintoameasuringcylind er(i.e.,agraduatedcylindricaljar)and
measurethewateroverflowed
Supposetheradiusoftheimmersedsphere

Find the volume of a sphere of radius 11.2 cm .

Class: $9^{\text {th }}$		Chapter: SURFACE AREA AND VOLUMES	
Total no. of period	this chapter:14 Period no : I / I4		
Subtopic: Problems on volume of the sphere			
Learning Outcomes \& Indicators/microcompetencies	Teaching-Learning Process This should include activities to facilitate learning along with broad time duration	Pointers for formative assessmentthis should include strategies that will be used to Check for Understanding - e.g., questions/worksheets/experiments lassignments/self-assessment checklists/etc.	Material required
	(5 mins) Demonstration Learners recalls that Total/Lateral surface Area of a sphere $=4 \pi r^{2}$ Curved Surface Area of a hemisphere $=2 \pi r^{2}$ Total Surface Area of hemisphere $=3 \pi r^{2}$ Volume of the Sphere $=4 / 3 \pi r^{3}$ Volume of the hemisphere $=2 / 3 \pi r^{3}$ (25 mins) demonstration by facilitator on board Explain some problems A metallic sphere of radius 10.5 cm is melted and thus recast into small cones, each of radius 3.5 cm and height 3 cm . Find how many cones are obtained. 1. A cone, a hemisphere and a cylinder stand on	Assignment: 1. Findthevolumeofaspherewhoseradiusis (i) 7 cm (ii) 0.63 m 2. Findtheamountofwaterdisplacedbyasoli	

Teachers' reflections and experiences:

1. Did I clearly communicate the lesson objectives to the students?
2. How can I ensure that students understand the objectives and can demonstrate their knowledge or skills related to them?
3. Did I use effective instructional strategies to engage students in the lesson?
4. How well did I manage the classroom during the lesson?

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

- Observational and identification skill while identifying the surfaces, edges and vertices of 3 Dshapes.
- Numeracy and calculation skills while calculating surfacearea
- Procedural thinking while doingquestions.
- Developing connections between LSA andTSA
- Visual and spatialability

4. Ahemisphericaltankismadeupofanironsheet1cmt hick.Iftheinnerradiusis1m, thenfindthevolumeoftheironusedtomakethetank.
5. Adomeofabuildingisintheformofahemisphere.Fro minside,itwaswhite-washedat thecostof74989.60.Ifthecostofwhite-washingis 720persquaremetre,findtheinsidesurfaceareaofth edome, (ii) volumeoftheairinsidethedome.

(10mins) Inclass Exercise: Closure

Now the facilitator takes some questions from the exercise and explains the concept more clearly.

1. Findthevolumeofaspherewhosesurfaceareais15 $4 \mathrm{~cm}^{2}$.
2. To the nearest tenth of a cubic centimeter, give the volume of a sphere with surface area 1,000 square centimeters.

Summative assessment plan- only where relevant

1. Twenty-sevensolidironspheres, eachofradiusrandsurfaceareaSaremeltedtoform aspherewithsurfaceareaSt. Findthe (i) radiusrtofthenewsphere,(ii)ratioofSandSt.
2. A capsule of medicine is in the shape of a sphere of diameter 3.5 mm . How much medicine(inmm ${ }^{3}$)isneededtofillthiscapsule?

Teachers' reflections and experiences:

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

surfacearea.

- Procedural thinking while doingquestions.
- Developing connections between LSA andTSA
- Visual and spatialability
tank

7. Findthevolumeofaspherewhosesurfaceareais1 $54 \mathrm{~cm}^{2}$.
8. Adomeofabuildingisintheformofahemisphere .Frominside,itwaswhite-washedat thecostof Rs 4989.60.Ifthecostofwhite-washingis Rs.20persquaremeter,
(i) findthe insidesurfaceareaofthedome, (ii) volumeoftheairinsidethedome.

(10 mins) In class Exercise: Closure

Now the facilitator takes some questions and explains the concept more clearly.

1. A vessel in the form of a hemispherical bowl is full of water. Its contents are emptied in a right circular cylinder. The internal radii of the bowl and the cylinder are 3.5 cm and 7 cm respectively. Find the height to which the water will rise in the cylinder.
2.Find the volume of a sphere whose surface area is 154 cm2.

Summative assessment plan- only where relevant

1. Twenty-seven solidironspheres, eachofradiusrandsurfaceareaSaremeltedtoform aspherewithsurfaceareaSt.Findthe
(i) radiusriofthenewsphere,(ii)ratioofSandSt.
2. A capsule of medicine is in the shape of a sphere of diameter 3.5 mm . How much medicine(inmm ${ }^{3}$) isneededtofillthiscapsule?

Teachers' reflections and experiences:

Chapter Plan (Unit plan/ lesson plan)Period plan (40 mins class)

		Chapter: SURFACE AREA AND VOLUMES				
Total no. of periods for this chapter:14 Period no :14/14 Subtopic: Practicing Case based Questions						
Learning Outcomes \& Indicators/microcompetencies	Teaching-Learning Process This should include activities to facilitate learning along with broad time duration	Pointers for formative assessment- this should include strategies that will be used to Check for Understanding - e.g., questions/worksheets/experiment s/assignments/self-assessment checklists/etc.				Material required
C-5.2: Visualizes and uses mathematical thinking to discover formulae to calculate surface areas and volumes of solid objects (cubes, cuboids, spheres, hemispheres, right circular cylinders/cones, and their combinations Able to: Deduce the formula to find the volume of sphere and its application to practical problems. Expected skill development:	(5 mins) Warm up Demonstration recall Learners recalls that the formulae for Cone, Sphere and Hemisphere through the recall of all the formulae. Now the facilitator takes some examples to tell the total quantity of substance that can be put into the sphere, this total quantity is called the capacity or the volume of the sphere.	Fiil up the blanks with suitable formulae:				ps://youtu.be/KXKyeAOP Y?si=8i9VPK2DCsgmJtb0 URCE::https://www.yout be.com/@mrmaisonet
		Name	$\underset{\substack{\text { Sutalac } \\ \text { Surcea }}}{ }$		Volume Figure	
		cone			4	
		Sphere ${ }^{\text {Hemisphere }}$			\rightarrow	
	(25 mins) demonstration by facilitator on board Explain some problems by answering:					

- Observational and identification skill while identifying the surfaces, edges and vertices of 3Dshapes.
- Numeracy and calculation skills while calculating surfacearea.
- Procedural thinking while doingquestions.
- Developing connections between LSA andTSA
- Visual and spatialability Analytical thinking and problemsolving.

1. Calculate the volume of the hemispherical

 dome if the height of the dome is 21 m -a) $19404 \mathrm{cu} . \mathrm{Mb}) 2000 \mathrm{cu} . \mathrm{m}$
c) $15000 \mathrm{cu} . \mathrm{m} \quad$ d) $19000 \mathrm{cu} . \mathrm{m}$
2. The formula to find the Volume of Sphere is a) $\left.2 / 3 \pi r^{3} b\right) 4 / 3 \pi r^{3}$
c) $4 \pi r^{2}$ d) $2 \pi r^{2}$
3. The cloth require to cover the hemispherical dome if the radius of its base is 14 m is
a) 1222 sq.m
b) $1232 \mathrm{sq} . \mathrm{m}$
c) $1200 \mathrm{sq} \cdot \mathrm{m}$
d) $1400 \mathrm{sq} . \mathrm{m}$
4. The total surface area of the combined figure i.e. hemispherical dome with radius 14 m and cuboidal shaped top with dimensions 8 m 6 m 4 m is
a) 1200 sq. m
b) 1232 sq. m
c) 1392 sq.m
d) 1932 sq. m

5. The volume of the cuboidal shaped top is with

 dimensions mentioned in question 4a) $182.45 \mathrm{~m}^{3} \mathrm{~b}$) $\left.282.45 \mathrm{~m}^{3} \mathrm{c}\right) 292 \mathrm{~m}^{3}$

Activity:(10 minutes)

To make the learning process more interesting creative and innovative teacher brings clay in the classroom, to teach the topic. Surface Areas and Volumes. With clay, forms a cylinder of radius 4 cm and height 18 cm . Then, she molds the cylinder into a sphere and ask some

1. Find the diameter of each sphere if fifteen identical spheres are made by melting a solid cylinder of radius 10 cm and height 5.4 cm .

Teachers' reflections and experiences:

1. Did I clearly communicate the lesson objectives to the students?
2. Did I use effective instructional strategies to engage students in the lesson?
3. How can I improve the variety and effectiveness of my teaching methods to cater to different learning styles and needs?
4. How well did I manage the classroom during the lesson?
5. Did the students actively participate and show interest in the lesson?

WORK SHEET:1 on SURFACE AREAS \& VOLUMES

Volume and Surface Area of Cones and Spheres

Leave answers to 2 decimal places where necessary.

Work out the volume, surface area or radius of the cones and spheres as required.
1)

2)

3)

4)

Volume $=$

Surface area =

Volume $=$

Surface area $=$

Volume $=$

Radius $=$

Surface area $=$
$25 \mathrm{~mm}^{2}$

Radius $=$

5)

6)

7)

8)

Volume $=$

Total area $=$

WORKSHEET. 2
 SURFACE AREAS AND VOLUMES

1. Find the volume of a sphere whose radius is:
(i) 2 cm
(ii) 3.5 cm
(iii) 10.5 cm
2. Find the volume of a sphere whose diameter is:
(i) 14 cm
(ii) 3.5 dm
(iii) 2.1 m
3. A hemispherical tank has inner radius of 2.8 m . Find its capacity in litres.
4. A hemispherical bowl is made of steel 0.25 cm thick. The inside radius of the bowl is 5 cm . find the volume of steel used in making the bowl.
5. How many bullets can be made out of a cube of lead, whose edge measures 22 cm , each bullet being 2 cm in diameter?
6. A shopkeeper has one laddoo of radius 5 cm . With the same material, how many laddoos of radius 2.5 cm can be made.

7. A sphere of radius 5 cm is immersed in water filled in a cylinder, the level of water rises 5353 cm . Find the radius of the cylinder.
8. If the radius of a sphere is doubled, what is the ratio of the volume of the first sphere to that of the second sphere?
9. A cone and a hemisphere have equal bases and equal volumes. Find the ratio of their heights.

WORKSHEET. 3

SURFACE AREAS AND VOLUMES

1. A vessel in the form of a hemispherical bowl is full of water. Its contents are emptied in a right circular cylinder. The internal radii of the bowl and the cylinder are 3.5 cm and 7 cm respectively. Find the height to which the water will rise in the cylinder.
2. A cylinder whose height is two thirds of its diameter, has the same volume as a sphere of radius 4 cm . Calculate the radius of the base of the cylinder.
3. A vessel in the form of a hemispherical bowl is full of water. The contents are emptied into a cylinder. The internal radii of the bowl and cylinder are respectively 6 cm and 4 cm . Find the height of water in the cylinder.
4. A cylindrical tub of radius 16 cm contains water to a depth of 30 cm . A spherical iron ball is dropped into the tub and thus level of water is raised by 9 cm . What is the radius of the ball?
5. A cylinder of radius 12 cm contains water to a depth of 20 cm . A spherical iron ball is dropped into the cylinder and thus the level of water is raised by 6.75 cm . Find the radius of the ball. (Use $\pi=22 / 7 \pi=22 / 7$.
6. The diameter of a coper sphere is 18 cm . The sphere is melted and is drawn into a long wire of uniform circular cross-section. If the length of the wire is 108 m , find its diameter.
7. A cylindrical jar of radius 6 cm contains oil. Iron spheres each of radius 1.5 cm are immersed in the oil. How many spheres are necessary to raise the level of the oil by two centimetres?
8. A measuring jar of internal diameter 10 cm is partially filled with water. Four equal spherical balls of diameter 2 cm each are dropped in it and they sink down in water completely. What will be the change in the level of water in the jar?
9. The diameter of a sphere is 6 cm . It is melted and drawn into a wire of diameter 0.2 cm . Find the length of the wire.
10. The radius of the internal and external surfaces of a hollow spherical shell are 3 cm and 5 cm respectively. If it is melted and recast into a solid cylinder of height 223223 cm . Find the diameter of the cylinder.

Chapter Plan (Unit Plan / Lesson Plans)

The following Curricular Goals (C.G.) \& Competencies (C) will be developed through teaching of this chapter.

Curricular Aims:

C.A. 1: Basic Numeracy; C.A. 2: Mathematical Thinking.; C.A. 3: Problem Solving. C.A. 4: Mathematical Intuition C.A.5: Joy, curiosity, and wonder:

Curricular Goals (C.G.)	Competencies (C)
C. G.-8 Builds skills such as visualisation, optimisation, representation, and mathematical modelling along with their C.G.-11 Explores connections of Mathematics with other subjects. application in daily life. C.G.-11 Explores connections of Mathematics with other subjects	C-6.1 Applies measures of central tendencies such as mean, median, and mode C-8.1 Models daily-life phenomena and uses representations such as graphs, tables, and equations to draw conclusions C-11.1 Applies mathematical knowledge and tools to analyze problems/ situations in multiple subjects across Science, Social Science, Visual Arts, Music, Vocational Education, and Sports.

MIND MAP:

Also discuss

LP No:	TEACHING TOPIC	LEARNING OUTCOMES
1	LP. 1 - Introduction of Statistical Graphs	1. Analyses data by graphically representing it as bar graph, histogram (with equal and varying width and length), and frequency polygon. 2. Analyses data by representing it in a tabular form (grouped or ungrouped).
2	LP. 2 - Bar Graphs	1. Analyses data by graphically representing it as bar graph, histogram (with equal and varying width and length), and frequency polygon. 2. Constructs bar graph from ungrouped tabulated (qualitative) data. 3. Retrieves data-values (ungrouped and grouped) with a given frequency from a given frequency table.
3	LP. 3 - Histogram	1. Analyses data by graphically representing it as bar graph, histogram (with equal and varying width and length), and frequency polygon. 2. Constructs histogram for grouped data with equal class size and with varying class-size. 3. Recognizes that any grouped data can be represented through a histogram and a frequency polygon. 4. Retrieves data-values (ungrouped and grouped) with a given frequency from a given frequency table. 5. Students will be able to create, compare, and interpret histograms
4	LP. 4 - Frequency Polygon using Histograms	1. Analyses data by graphically representing it as bar graph, histogram (with equal and varying width and length), and frequency polygon. 2. Constructs histogram for grouped data with equal class-size. 3. Constructs histogram for grouped data with varying class-size. 4. Recognizes that any grouped data can be represented through a histogram and a frequency polygon. 5. Constructs frequency polygon for grouped data through the mid values of histograms.
5	LP. 5 - Frequency Polygons	1. Analyses data by graphically representing it as bar graph, histogram (with equal and varying width and length), and frequency polygon. 2. Analyses data by representing it in a tabular form (grouped or ungrouped) 3. Constructs frequency polygon for grouped data through the mid values of histograms. 4. Retrieves data-values (ungrouped and grouped) with a given frequency from a given frequency table.

Class: 09 Total no. of periods for this cha	Subject: Mathematics Period No: 01 / 05	Chapter: 12. STATISTICS Subtopic: Introduction of Statistical Graphs	
Learning Outcomes \& Indicators / MicroCompetencies	Teaching-Learning Process This should include activities to facilitate learning along with broad time duration	Pointers for formative Assessment This should include strategies that will be used to Check for Understanding - e.g., questions / worksheets / experiments / assignments / selfassessment checklists/etc.	Material Required
Curricular Competencies: C - 6.1 Applies measures of central tendencies such as mean, median, and mode C-8.1 Models daily-life phenomena and uses representations such as graphs, tables, and equations to draw conclusions C-11.1Applies mathematical knowledge and tools to analyze problems/ situations in multiple subjects across Science, Social Science,	Introduction: (35 minutes) Teacher asks the following questions and testing of previous knowledge (Individual work followed by pair sharing and whole grouping sharing). The students ask for retrieval the previous knowledge by the following activities. Activity 1 : The student asks to observe the figure and give answers for the following questions:	1. How many cars were produced in the month of July? 2. In which month were maximum number of cars produced?	Statistical Graphs in daily life situations.

(a) What information is compared in the above given double bar graph?
(b) Calculate the ratio of minimum temperatures in the year 2008 to the year 2009 for the month of November.
(c) For how many months was the minimum temperature in the year 2008 greater than that of year 2009? Name those months.
(d) Find the average minimum temperature for the year 2008 for the four months.
(e) In which month is the variation in the two temperatures maximum?

Teachers' reflections and experiences:

1. How can I improve the variety and effectiveness of my teaching methods to cater to different learning styles and needs?
2. How well did I manage the classroom during the lesson?
3. Were there any disruptions or behavioural issues that I need to address?
4. What strategies can I implement to improve classroom management?
5. Did the students actively participate and show interest in the lesson?

Visual Arts, Music, Vocational Education, and Sports.

LEARNING OUTCOMES:

1. Analyses data by graphically representing it as bar graph, histogram (with equal and varying width and length), and requency polygon.
2. Constructs bar graph from ungrouped tabulated (qualitative) data.
3. Retrieves data-values (ungrouped and grouped) with a given frequency from a given frequency table.

[Teacher play all videos and explain the concept and asks the students to write their observations]

Demonstration: (25 minutes)

A family with a monthly income of 20,000 had planned the following expenditures per month under various heads:

1. What are items involved in the bar graph.?
2. What we call the line of Ice cream flavor shown in the figure?
3. What we call the line of frequency shown in the figure?
4. Is common interval shown for denoting frequency on Y-axis or not?
5. Each bar shows for what?
6. How many children likes chocolate?
7. Which item less likely shows in the graph.

All videos in the following from tic tac learn English YouTube

Bar graph?
2. How much budget expenditure amount allotted for Grocery?
3. Which item is allotted highest expenditure?

All about Bar Graphs

Draw a bar graph for the data above.
By giving instructions students will draw the Bar graph:

ASSIGNMENT: (5 minutes)

The table below shows the favourite colour of 200 kids in a class.

Favourite Colours	Red	Green	Blue	Yellow	Orange

4. How much amount is allotted for entertainment?
5. For what heading is used for X -axis and Y- axis?
6. Is total income equal to expenditure?

Bar Graph

Bar graph 2

Summative Assessment Plan

1. Draw a bar graph using the information in the table below.

A	B	C	D	E	F
200	300	225	350	275	325

(i) Which of the letters A, B, C, D, E, and F has the highest value?
(ii) Which of the following is greater: $A+D$ or $B+E$?

Teachers' reflections and experiences:

LEARNING OUTCOMES:

1. Analyses data by graphically representing it as bar graph, histogram (with equal and varying width and length), and frequency polygon.
2. Constructs histogram for grouped data with equal class-size.
3. Constructs histogram for grouped data with varying class-size.
4. Recognizes that any grouped data can be represented through a histogram and a frequency polygon.
5. Students will be able to create, compare, and interpret histograms

Demonstration: (25 minutes)

Activity 1:

Teacher will give suggestions for drawing Histogram of the following problem when students drawing Histogram.

1. Identify the ranges of weights are given.
2. How many students are there?
3. What is the scale for number of students?

Weights (in kg)	Number of students
$30.5-35.5$	9
$35.5-40.5$	6
$40.5-45.5$	15
$45.5-50.5$	3
$50.5-55.5$	1
$55.5-60.5$	2
Total	36

Student represent the weights on the horizontal axis on a suitable scale.

Students can choose the scale as $1 \mathrm{~cm}=5 \mathrm{~kg}$. Also,
Student represent the number of students (frequency) on the vertical axis on a suitable scale. Since the maximum frequency is 15 , we need to choose the scale to accommodate this maximum frequency.
Students ask to draw rectangles (or rectangular bars) of width equal to the class-size and lengths according to the frequencies of the corresponding class intervals.

ASSIGNMENT: (5 minutes)

Identify whether the following statements are True or False:
A. Histograms represent a continuous form of data.
B. Bars are made with no gaps in between them to show the continuity of the data.
C. The height of the bars represents the frequency of the data point, whereas the width represents the length of the class or interval.
D. It is required that the calibrations on axes should begin with zero keeping equal intervals. Sometimes, we use a kink or a zig-zag line to show a break in the axes.
E. If the chosen class intervals are uniform, then the area of bars directly varies according to the frequency of the class interval.

Summative Assessment Plan

Question: The following table gives the lifetime of 400 neon lamps. Draw the histogram for the below data

Lifetime (in hours)	Number of lamps
$300-400$	14
$400-500$	56
$500-600$	60
$600-700$	86
$700-800$	74
$800-900$	62
$900-1000$	48

Teachers' reflections and experiences:

1. How can I improve the variety and effectiveness of my teaching methods to cater to different learning styles and needs?
2. How well did I manage the classroom during the lesson?
3. Were there any disruptions or behavioural issues that I need to address?
4. What strategies can I implement to improve classroom management?
5. Did the students actively participate and show interest in the lesson?

Summative Assessment Plan

1. Draw histogram for the following and draw frequency polygon

Class Interval	15	45	75	105	135	Total
Frequency	7	4	5	10	6	32

Teachers' reflections and experiences:

1. How can I improve the variety and effectiveness of my teaching methods to cater to different learning styles and needs?
2. How well did I manage the classroom during the lesson?
3. Were there any disruptions or behavioural issues that I need to address?
4. What strategies can I implement to improve classroom management?
5. Did the students actively participate and show interest in the lesson?

Education，and Sports．

LEARNING OUTCOMES：

1．Analyses data by
graphically representing it as bar graph，histogram（with equal and varying width and length），and frequency polygon．
2．Analyses data by representing it in a tabular form（grouped or ungrouped）

3．Constructs frequency polygon for grouped data through the mid values of histograms．
4．Retrieves data－values （ungrouped and grouped）with a given frequency from a given frequency table．

Teacher will demonstrate the drawing of frequency polygon without Histogram by the following steps：
 The steps required to construct a frequency polygon in the case of continuous series without the help of a histogram are

1．Take the midpoints of the X －axis for class intervals and the Y －axis for frequency．

2．Plot the different frequencies，joining the points with a straight line．

Activity：

In a city，the weekly observations made in a study on the cost－of－living index are given in the following table：

Cost of living Index	Number of weeks
$140-150$	5
$150-160$	10
$160-170$	20
$170-180$	9
$180-190$	6
$190-200$	2
	$\mathbf{5 2}$

1．What are the class intervals？
2．How many are the class intervals？
3．What are the class marks for given class intervals？

4．Fill up the table with class marks for the class intervals．

Cost of living Index	Number of weeks	Class marks （Mid values）
$140-150$	5	\ldots
$150-160$	10	\ldots
$160-170$	20	\ldots
$170-180$	9	\ldots
$180-190$	6	\ldots
$190-200$	2	\ldots
	52	

Draw the frequency polygon without drawing Histogram：

Teachers' reflections and experiences:

1. How can I improve the variety and effectiveness of my teaching methods to cater to different learning styles and needs?
2. How well did I manage the classroom during the lesson?
3. Were there any disruptions or behavioural issues that I need to address?
4. What strategies can I implement to improve classroom management?
5. Did the students actively participate and show interest in the lesson?

- Teachers utilize remaining periods for explaining exercise problems activities and for extended learning as per availability

WORKSHEET ON STATISTICS

1. The below histogram shows the weekly wages of workers at a construction site:

Answer the following questions:
(i) How many workers get wages of ₹ 60-70?
(ii) Construct a frequency distribution table.
(iii) What is the cumulative frequency for the class $50-60$?
(iv) What is highest frequency?
2. Examine the graph below carefully and answer the following questions. The graph depicts the results of a school's students.

Result in a School

Answer the following questions:

(a) Which year has the smallest difference between the number of kids who passed and those who failed?
(b) In the last five years, what was the average number of kids who failed in school?
(c) How many times have the same number of kids failed?
3. The frequency polygon of a frequency distribution is shown below. Observe and answer the questions.

Answer the following questions:
(i) What is the frequency of the class interval whose class mark is 15 ?
(ii) What is the class interval whose class mark is 45 ? (iii) what is the highest frequency?
5. The frequency polygon of a frequency distribution is shown below. Observe and answer the questions.

Answer the following questions:
(i) Find the class interval whose frequency is 25 .
(ii) How many labourers have a weekly income of at least Rs 500 but not more than Rs 700 ?
(iii) How many members available for weekly income Rs 400.

REMEDIAL INSTRUCTION FOR THE CHAPTER STATISTICS

If necessary remedial reteaching the following concepts:

1. Introduction of Statistical Graphs
2. Construction of Bar Graphs
3. Constructions of Histogram
4. Frequency Polygon using Histogram
5. Frequency Polygons without using Histogram

DEPARTMENT OF SCHOOL EDUCATION

SAMAGRA SHIKSHA - A.P. EDUCATION FOR ALL

STATE COUNCIL OF EDUCATIONAL RESEARCH AND TRAINING (SCERT)

[^0]: ${ }^{1}$ Chapter 4 \& 5, National Education Policy, 2020 (NEP, 2020)

[^1]: 4) Operations on Real Numbers
 5) Laws of Exponents for Real Numbers
